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Abstract

Elimination for systems of algebraic differential equations

by

Richard Gustavson

Adviser: Alexey Ovchinnikov

We develop new upper bounds for several effective differential elimination techniques for

systems of algebraic ordinary and partial differential equations. Differential elimination, also

known as decoupling, is the process of eliminating a fixed subset of unknown functions from

a system of differential equations in order to obtain differential algebraic consequences of

the original system that do not depend on that fixed subset of unknowns. A special case of

differential elimination, which we study extensively, is the question of consistency, that is, if

the given system of differential equations has a solution. We first look solely at the “algebraic

data” of the system of differential equations through the theory of differential kernels to

provide a new upper bound for proving the consistency of the system. We then prove a

new upper bound for the effective differential Nullstellensatz, which determines a sufficient

number of times to differentiate the original system in order to prove its inconsistency.

Finally, we study the Rosenfeld-Gröbner algorithm, which approaches differential elimination

by decomposing the given system of differential equations into simpler systems. We analyze

the complexity of the Rosenfeld-Gröbner algorithm by computing an upper bound for the

orders of the derivatives in all intermediate steps and in the output of the algorithm.
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Chapter 1

Introduction

It is a fundamental problem to determine whether a system F = 0, F = f1, . . . , fr, of

polynomial partial differential equations (PDEs) with coefficients in a differential field K is

consistent, that is, whether it has a solution in a differential field containing K. This is a

special case of differential elimination, which is the process of eliminating a given subset of

differential indeterminates from the system F = 0 in order to produce differential algebraic

consequences of the system that do not depend on the chosen subset of differential indeter-

minates. This dissertation is mainly focused on the question of consistency. We approach

this problem in three different ways. First, we look at the system F = 0 as a purely alge-

braic system using differential kernels. Second, we build off this theory using the differential

Nullstellensatz. Third, we decompose the system F = 0 into simpler systems using the

Rosenfeld-Gröbner algorithm. In each case, we seek effective methods for solving the stated

problem. That is, we look for upper bounds for various properties involved, which allows

for the creation of algorithms. This chapter begins by providing a brief overview of each

method and its history, before describing our results.

1
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Consider the following system of polynomial PDEs


ux + vy = 0

uy − vx = 0

(uxx + uyy)
2 + (vxx + vyy)

2 = 1

(1.0.1)

with differential indeterminates u, v and ∂1 = ∂/∂x, ∂2 = ∂/∂y. The corresponding system

of polynomial equations is


z1 + z2 = 0

z3 − z4 = 0

(z5 + z6)2 + (z7 + z8)2 = 1

which is consistent (e.g., take z1 = . . . = z7 = 0 and z8 = 1). On the other hand, sys-

tem (1.0.1) is inconsistent. Indeed, applying ∂1 and ∂2 to the first and second equations

in (1.0.1), consider the extended system



ux + vy = 0

uy − vx = 0

uxx + vxy = 0

uyy − vxy = 0

uxy + vyy = 0

uxy − vxx = 0

(uxx + uyy)
2 + (vxx + vyy)

2 = 1.

It now remains to substitute the sum of the third and fourth equations and the difference

of the fifth and sixth equations into the last equation to obtain 0 = 1. The equivalent
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polynomial system is 

z1 + z2 = 0

z3 − z4 = 0

z5 + z9 = 0

z6 − z9 = 0

z10 + z8 = 0

z10 − z7 = 0

(z5 + z6)2 + (z7 + z8)2 = 1

which is inconsistent by the above reasoning. In this particular example, by differentiating

the first two equations of (1.0.1) one time, we discover that the corresponding polynomial

system is inconsistent. This example illustrates the essence of the first two methods we will

study, differential kernels and the effective differential Nullstellensatz.

The method of differential kernels is aimed to study the set of algebraic solutions of a

given system of algebraic differential equations (viewed as a purely algebraic system), and

then determine if an algebraic solution can be used to construct a differential solution. This

construction is not always possible, as evidenced by the above example. More precisely, a

differential kernel is a field extension of the ground differential field (K, ∂1, . . . , ∂m) obtained

by adjoining a solution of the associated algebraic system such that this solution serves as

a means to “prolong” the derivations from K. Kernels were first studied in the context of

functional equations [1, 7]. Differential kernels in a single derivation were studied by Cohn

[8] and Lando [30]. We consider differential kernels with an arbitrary number of commuting

derivations. A differential kernel is said to have a regular realization if there is a differential

field extension of K containing the differential kernel and such that the generators of the

kernel form the sequence of derivatives of the generators of order zero. A differential kernel

has a regular realization if and only if the chosen solution of the associated algebraic system

can be prolonged to yield a differential solution to the original system of differential equations.
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Thus, the problem of determining the consistency of a given system of differential equations

is equivalent to the problem of determining the existence of regular realizations of a given

differential kernel. In a single derivation, every differential kernel has a regular realization

[30, Proposition 3]. However, this is no longer the case with more than one derivation.

The first analysis of differential kernels with several commuting derivations appears in

the work of Pierce [35], using different terminology (there a differential kernel is referred

to as a field extension satisfying the differential condition). In that paper it is shown that

if a differential kernel has a prolongation of a certain length (that is, we can extend the

derivations from the algebraic solution some finite number of times), then it has a regular

realization. We note here that even if a differential kernel has a proper prolongation, this is no

guarantee that a regular realization will exist. We denote by T nh,m the smallest prolongation

length that guarantees the existence of a regular realization of any differential kernel of

length h in n differential indeterminates (dependent variables) over any differential field

of characteristic zero with m commuting derivation operators ∂1, . . . , ∂m (that is, with m

independent variables). Note that this number only depends on the data (h,m, n). A

recursive construction of an upper bound for T nh,m was provided in [31]; unfortunately, this

upper bound is unwieldy from a computational standpoint even when m = 2 or 3.

Another method of studying consistency is the differential Nullstellensatz, which states

that the consistency of the differential algebraic system F = 0 is equivalent to showing

that the equation 1 = 0 is not a differential-algebraic consequence of the system F = 0.

Algebraically, the latter says that 1 does not belong to the differential ideal generated by F

in the ring of differential polynomials. The differential Nullstellensatz was first proved by Ritt

[36] for the field of meromorphic functions, and then for arbitrary differential fields by Kolchin

[27]. The differential Nullstellensatz does not tell us how many derivatives is sufficient to

apply to the system F = 0 in order to determine whether 1 = 0 is a differential-algebraic

consequence of it. The solution to this problem is the effective differential Nullstellensatz.
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Let F = 0 be a system of polynomial PDEs in n differential indeterminates and m

commuting derivation operators ∂1, . . . , ∂m, of total order h and degree d, with coefficients

in a differential field K of characteristic zero. For every non-negative integer b, let F (b) = 0

be the set of differential equations obtained from the system F = 0 by differentiating each

equation in it b times with respect to any combination of ∂1, . . . , ∂m. An upper bound for the

effective differential Nullstellensatz is a function b(m,n, h, d) such that, for all such F , the

system F = 0 is inconsistent if and only if the system of polynomial equations in F (b(m,n,h,d))

is inconsistent. By the usual Hilbert’s Nullstellensatz, the latter is equivalent to

1 ∈
(
F (b(m,n,h,d))

)
,

the ideal generated by F (b(m,n,h,d)).

The effective differential Nullstellensatz was first addressed in [39], without providing

a complete solution. In the ordinary case (m = 1), the first bound, which was triple-

exponential in n and polynomial in d, appeared in [16]. The first general formula for the upper

bound and first series of examples for the lower bound in the case of m derivations appeared

in [15]. That formula is expressed in terms of the Ackermann function and is primitive

recursive but not elementary recursive in n, h, d for each fixed m and is not primitive recursive

in m. A model-theoretic treatment was given in [22]. In the case of constant coefficients

and m = 1, an important breakthrough was made in [9], where a double-exponential bound

in n was given. The Ackermannian nature of the general bound, however, made it not

computationally viable even for m = 2 or 3.

Decomposition algorithms take a different approach to the problem of differential elimi-

nation by decomposing a system of differential equations into an intersection of systems, each

with specific properties that can be more easily studied. The Rosenfeld-Gröbner algorithm

is a fundamental decomposition algorithm which allows us to study both the problems of
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consistency and differential elimination. This algorithm, which first appeared in [2, 3], takes

as its input a finite set F of differential polynomials and outputs a representation of the

radical differential ideal generated by F as a finite intersection of regular differential ideals.

The algorithm can test membership in a radical differential ideal, and, in conjunction with

the differential Nullstellensatz, can test the consistency of a system of polynomial differential

equations. The Rosenfeld-Gröbner algorithm has an advantage over other decomposition al-

gorithms, such as the Ritt-Kolchin algorithm [27, 37], since the Rosenfeld-Gröbner algorithm

does not depend on the factorization problem [27, §IV.9], which is too complex to implement

in computer algebra systems.

The Rosenfeld-Gröbner algorithm has been implemented in Maple as a part of the

DifferentialAlgebra package. In order to determine the complexity of the algorithm, we

need to find an upper bound on the orders of derivatives that appear in all intermediate steps

and in the output of the algorithm. The first step in answering this question was completed in

[14], in which an upper bound in the case of a single derivation and any ranking on the set of

derivatives was found. If there are n unknown functions and the order of the original system

is h, it was shown that an upper bound on the orders of the output of the Rosenfeld-Gröbner

algorithm is h(n− 1)!. Nothing was shown, however, for the case of multiple derivations.

In this dissertation, we provide new and improved upper bounds for all of these methods.

In Chapter 2 we introduce the concept of differential kernels and prove some basic results

about them. Chapter 3 is focused on providing an improved upper bound for T nh,m, the

smallest prolongation length of a differential kernel that guarantees the existence of a regular

realization. The material in these chapters originally appeared in [17, 18]. This new upper

bound is given in Theorem 3.1.4 by the number Cn
h,m, which we introduce in Section 3.1. In

further sections we show that there is a recursive algorithm that computes the value of the

integer Cn
h,m. This is a nontrivial task, as we develop a series of new combinatorial results

in order to complete the proof. In Section 3.2, we prove the main combinatorial result of
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the chapter, Theorem 3.2.7. This theorem is a strengthening of Macaulay’s theorem on the

growth of the Hilbert-Samuel function when applied to certain sequences called connected

antichain sequences of Zm>0. We then use a consequence of this combinatorial result, namely

Corollary 3.2.9, in Section 3.3 to show that the integer Cn
h,m can be expressed in terms

of the maximal length of certain antichain sequences (see Theorem 3.3.9). At this point,

we use the results from [31, §3] to derive an algorithm that computes the number Cn
h,m.

This new upper bound Cn
h,m of T nh,m allows us to produce specific, computationally viable

upper bounds for a small numbers of derivations (for example, one, two, or three derivations),

which the previously known bound does not produce. In Section 3.4 we provide some concrete

computations to show how our new upper bound compares with what was previously known.

For instance, our bound produces

T nh,2 ≤ 2nh and T 1
h,3 ≤ 3(2h − 1),

which, surprisingly, was not known previously.

In Chapter 4, we improve the upper bound for the effective differential Nullstellensatz.

The material in this chapter originally appeared in [19]. Our main result, Theorem 4.2.1,

provides a uniform upper bound on the number of differentiations needed for all systems

of polynomial PDEs with the number of derivations, indeterminates, total order, and total

degree bounded by m, n, h, and d, respectively. This bound outperforms the previously

known general upper bound [15]. Our result reduces the problem to the polynomial effective

Nullstellensatz, which has been very well studied, with many sharp results available [5, 10,

25, 28, 29]. On the other hand, note that our problem is substantially more difficult than this

problem, because the polynomial effective Nullstellensatz corresponds (see Theorem 4.4.3)

to the effective differential Nullstellensatz restricted to systems of linear (d = 1) PDEs in

one indeterminate (n = 1) with constant coefficients, and we do not make these restrictions.
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We go beyond the recent result of [9] and use the methods of differential kernels for

fields with several commuting derivations [12, 35] to obtain a new upper bound for the most

general case in terms of T nh,m: the coefficients do not have to be constant and we allow any

number of derivations m. For any m, our bound is polynomial in d. For m = 1, 2, 3, a more

concrete analysis of the bound is given in Section 4.3 using the bounds on T nh,m given in

Chapter 3, which shows that our bound is elementary recursive in these cases. In particular,

for m = 1, it is double-exponential in n and h and is polynomial in d, as in [9], but does

not require constant coefficients. For m = 2 and n = 1, it is triple-exponential in h. Our

Examples 4.4.2 and 4.4.6 show lower bounds that are polynomial in h and d and exponential

in mn.

In Chapter 5, we find an upper bound for the orders of derivatives that appear in all

intermediate steps and in the output of the Rosenfeld-Gröbner algorithm in the case of an

arbitrary number of commuting derivations and a weighted ranking on the derivatives. The

material in this chapter originally appeared in [20, 21]. We show in Theorem 5.3.4 that an

upper bound for the weights of derivatives in the intermediate steps and in the output of the

Rosenfeld-Gröbner algorithm is given by hfL+1, where h is the weight of our input system

of differential equations, {f0, f1, f2, . . . } is the Fibonacci sequence {0, 1, 1, 2, 3, 5, . . . }, and

L is the maximal possible length of a certain antichain sequence (that depends solely on h,

the number m of derivations, and the number n of differential indeterminates). By choosing

a specific weight, we are able to produce an upper bound for the orders of the derivatives in

the output of the Rosenfeld-Gröbner algorithm. For m = 2, we refine this upper bound in

a new way (see Corollary 5.3.5) by showing that the weights of the derivatives are bounded

above by a sequence defined similarly to the Fibonacci sequence but with a slower growth

rate.

The upper bound for T nh,m (and thus for the effective differential Nullstellensatz) and

for the orders of the output of the Rosenfeld-Gröbner algorithm depend on the lengths of
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certain antichain sequences of the set Zm>0 × {1, . . . , n} with the partial order 6 defined by

((a1, . . . , am), i) 6 ((b1, . . . , bm), j) if and only if i = j and ak 6 bk for all 1 6 k 6 m. An

analysis of the lengths of these antichain sequences began in [35] and continued in [12]. In [31]

a recursive function is given that calculates the maximal length of an antichain sequence in

(Zm>0×{1, . . . , n},6) with degree growth bounded by a given function f . This breakthrough

allowed for many of the calculations of specific upper bounds found in this dissertation.

There are other similarities between the nature of the three upper bounds that we have

obtained in addition to their dependence on lengths of antichain sequences, as well as differ-

ences. The bound on the effective differential Nullstellensatz relies on the bound for T nh,m,

but also on the classical polynomial Nullstellensatz; as a result, the upper bound for the ef-

fective differential Nullstellensatz is larger than the other upper bounds, and also depends on

the degree of the original system of differential equations (which is not the case for the other

upper bounds). One final similarity among all of the bounds is that (with some exceptions)

they are not sharp, that is, the current upper bounds do not equal the lower bounds (in

the case of T nh,m, a general form for the lower bound is not known). Recently, improvements

have been made to the upper bound for the effective differential Nullstellensatz in [34] using

triangular sets; also appearing there is the first upper bound for the problem of effective

differential elimination. It is an ongoing project to continue to improve both the upper and

lower bounds for all of these quantities.



www.manaraa.com

Chapter 2

Differential Kernels

2.1 Background on differential algebra

In this section, we present background material from differential algebra that is pertinent to

the dissertation. For a more in-depth discussion, we refer the reader to [24, 26, 27, 37].

A differential ring is a commutative ring R with a collection of m commuting derivations

∆ = {∂1, . . . , ∂m} on R. An ideal I of a differential ring is a differential ideal if δa ∈ I for

all a ∈ I, δ ∈ ∆. For a set A ⊆ R, let (A),
√

(A), [A], and {A} denote the smallest ideal,

radical ideal, differential ideal, and radical differential ideal containing A, respectively. If

Q ⊆ R, then {A} =
√

[A].

Remark 2.1.1. In this dissertation, as usual, we also use the braces {a1, a2, . . .} to denote the

set containing the elements a1, a2, . . .. Even though this notation conflicts with the above

notation for radical differential ideals (used here for historical reasons), it will be clear from

the context which of the two objects we mean in each particular situation.

In this dissertation, K is a differential field of characteristic zero with m commuting

10
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derivations ∆ = {∂1, . . . , ∂m}. The set of derivative operators is denoted by

Θ :=
{
∂i11 . . . ∂imm : ij ∈ Z>0, 1 6 j 6 m

}
.

For Y = {y1, . . . , yn} a set of n differential indeterminates, the set of derivatives of Y is

ΘY := {θy : θ ∈ Θ, y ∈ Y }.

Then the ring of differential polynomials over K is defined to be

K{Y } = K{y1, . . . , yn} := K[θy : θy ∈ ΘY ].

We can naturally extend the derivations ∂1, . . . , ∂m to the ring K{Y } by defining

∂j
(
∂i11 . . . ∂imm yk

)
:= ∂i11 . . . ∂

ij+1
j . . . ∂imm yk.

For any θ = ∂i11 . . . ∂imm ∈ Θ, we define the order of θ to be

ord(θ) := i1 + . . .+ im.

For any derivative u = θy ∈ ΘY , we define

ord(u) := ord(θ).

For a differential polynomial f ∈ K{Y } \ K, we define the order of f to be the maximum

order of all derivatives that appear in f . For any finite set A ⊆ K{Y } \ K, we set

H(A) := max{ord(f) : f ∈ A}. (2.1.1)
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For any θ = ∂i11 . . . ∂imm and positive integers c1, . . . , cm ∈ Z>0, we define the weight of θ to

be

w(θ) = w
(
∂i11 . . . ∂imm

)
:= c1i1 + . . .+ cmim.

Note that if all of the ci = 1, then w(θ) = ord(θ) for all θ ∈ Θ. For a derivative u = θy ∈ ΘY ,

we define the weight of u to be w(u) := w(θ). For any differential polynomial f ∈ K{Y }\K,

we define the weight of f , w(f), to be the maximum weight of all derivatives that appear in

f . For any finite set A ⊆ K{Y } \ K, we set

W(A) := max{w(f) : f ∈ A}. (2.1.2)

A ranking on the set ΘY is a total order < satisfying the following two additional prop-

erties: for all u, v ∈ ΘY and all θ ∈ Θ, θ 6= id,

u < θu and u < v =⇒ θu < θv.

A ranking < is called an orderly ranking if for all u, v ∈ ΘY ,

ord(u) < ord(v) =⇒ u < v.

Given a weight w, a ranking < on ΘY is called a weighted ranking if for all u, v ∈ ΘY ,

w(u) < w(v) =⇒ u < v.

Remark 2.1.2. Note that if w
(
∂i11 . . . ∂imm

)
= i1 + . . . + im (that is, w(θ) = ord(θ)), then a

weighted ranking < on ΘY is in fact an orderly ranking.
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2.2 Differential kernels

Fix a positive integer n. We are interested in field extensions of K whose generators over

K are indexed by elements of Zm>0 × n, where n = {1, . . . , n}. To do so, we introduce the

following terminology: Given an element ξ = (u1, . . . , um) ∈ Zm>0, we define the degree of ξ

to be

deg(ξ) = u1 + . . .+ um.

If α = (ξ, i) ∈ Zm>0 × n, we set deg(α) = deg(ξ). For any h ∈ Z>0, we let

Γ(h) = {α ∈ Zm>0 × n : deg(α) 6 h}.

We will consider two different orders 6 and P on Zm>0× n. Given two elements α = (ξ, i)

and β = (τ, j) of Zm>0 × n, we set α 6 β if and only if i = j and ξ 6 τ in the product order

of Zm>0 (recall the product order on Zm>0 says that (a1, . . . , am) 6 (b1, . . . , bm) if and only if

ai 6 bi for all 1 6 i 6 m). On the other hand, if ξ = (u1, . . . , um) and τ = (v1, . . . , vm), we

set (ξ, i) P (τ, j) if and only if

(deg(ξ), i, u1, . . . , um) is less than or equal to (deg(τ), j, v1, . . . , vm)

in the (left) lexicographic order. Note that if x = (x1, . . . , xn) are differential indeterminates

and we identify α = (ξ, i) with ∂ξxi := ∂u11 . . . ∂umm xi, then 6 induces an order on the set of

algebraic indeterminates {∂ξxi : (ξ, i) ∈ Zm>0 × n} given by ∂ξxi 6 ∂τxj if and only if ∂τxj is

a derivative of ∂ξxi (in particular this implies that i = j). On the other hand, the ordering

P induces the canonical orderly ranking on the set of algebraic indeterminates.

Recall that an antichain in a partially ordered set (P,<) is a collection of elements of P

that are all pairwise incomparable with respect to the partial order. An antichain sequence

in (P,<) is a sequence (p1, p2, p3, . . . ) of elements of P such that the set containing these
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elements is an antichain. We will work mostly with antichain sequences in the partially

ordered set (Zm>0 × n,6), although occasionally we will look at antichain sequences in other

partially ordered sets. By Dickson’s lemma every antichain sequence ᾱ = (α1, . . . , αk) in

(Zm>0 × n,6) must be finite.

We will look at field extensions of K of the form

L := K(aξi : (ξ, i) ∈ Γ(h)) (2.2.1)

for some fixed h ∈ Z>0, although occasionally we will have to consider extensions of the form

K(aξi : (ξ, i) C (τ, k)) for some fixed (τ, k) ∈ Zm>0 × n. Here we use aξi as a way to index the

generators of L over K. The element (τ, j) ∈ Zm>0 × n is said to be a leader of L if aτj is

algebraic over K(aξi : (ξ, i) C (τ, j)), and a leader (τ, j) is a minimal leader of L if there is

no leader (ξ, i) with (ξ, i) < (τ, j). The set of minimal leaders of L forms an antichain of

(Zm>0 × n,6). We note that the notions of leader and minimal leader make sense even when

we allow h =∞.

We now define the main object of study for this section and Chapter 3.

Definition 2.2.1. The field extension L, as in (2.2.1), is said to be a differential kernel over

K if there exist derivations

Dk : K(aξi : (ξ, i) ∈ Γ(h− 1))→ L

extending ∂k for 1 6 k 6 m such that Dka
ξ
i = aξ+k

i for all (ξ, i) ∈ Γ(h− 1), where k ∈ Zm>0 is

the m-tuple with a one in the k-th component and zeros elsewhere. The number h is called

the length of the differential kernel. If L has the form K(aξi : (ξ, i) C (τ, j)) for some fixed
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(τ, j) ∈ Zm>0 × n, we say that L is a differential kernel over K if there exist derivations

Dk : K(aξi : (ξ + k, i) C (τ, j))→ L

extending ∂k for 1 6 k 6 m such that Dka
ξ
i = aξ+k

i whenever (ξ + k, i) C (τ, j).

Unless stated otherwise every differential kernel L will have the form (2.2.1).

Definition 2.2.2. A prolongation of a differential kernel (L, D1, . . . , Dm) of length s > h is

a differential kernel L′ = K(aξi : (ξ, i) ∈ Γ(s)) over K with derivations D′1, . . . , D
′
m such that

L′ is a field extension of L and D′k extends Dk for 1 6 k 6 m. The prolongation L′ of L is

called generic if the set of minimal leaders of L and L′ coincide.

In the ordinary case, m = 1, every differential kernel of length h has a prolongation of

length h + 1 (in fact a generic one) [30, Proposition 1]. However, for m > 1, prolongations

need not exist.

Example 2.2.3. Working with m = 2 and n = 1, set K = Q and L = Q(t, t, 1) where t is

transcendental over Q. Here we are setting

a(0,0) = t, a(1,0) = t, and a(0,1) = 1.

The field L equipped with derivations D1 and D2 such that D1(t) = t and D2(t) = 1 is a

differential kernel over Q of length 1; however, it does not have a prolongation of length 2.

Indeed, if L had a prolongation

L′ = Q(aξ : deg(ξ) 6 2)
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with derivations D′1 and D′2, then we would get the contradiction

0 = D′1(1) = D′1a
(0,1) = a(1,1) = D′2a

(1,0) = D′2(t) = 1.

Definition 2.2.4. A differential kernel L′ = K(bξi : (ξ, i) ∈ Γ(h)) is said to be a specialization

(over K) of the differential kernel L if the tuple (bξi : (ξ, i) ∈ Γ(h)) is a specialization of

(aξi : (ξ, i) ∈ Γ(h)) over K in the algebraic sense, that is, there is a K-algebra homomorphism

φ : K(aξi : (ξ, i) ∈ Γ(h))→ K(bξi : (ξ, i) ∈ Γ(h))

that maps aξi 7→ bξi . The specialization is said to be generic if φ is an isomorphism.

Lemma 2.2.5. Suppose L′ is a generic prolongation of L of length s. If L̄ is another

prolongation of L of length s, then L̄ is a specialization of L′.

Proof. Let L′ = K(aξi : (ξ, i) ∈ Γ(s)) with derivations D′1, . . . , D
′
m, and L̄ = K(bξi : (ξ, i) ∈

Γ(s)) with derivations D̄1, . . . , D̄m. Since L̄ is a prolongation of L, we have that bξi = aξi for

all (ξ, i) ∈ Γ(h). For convenience of notation we let

L′P(τ,j) := K(aξi : (ξ, i) P (τ, j)) and L′C(τ,j) := K(aξi : (ξ, i) C (τ, j)),

when h 6 deg(τ) 6 s. Note that

L′P(h1,n) = L and L′P(s1,n) = L′.

Similar notation, and remarks, apply to L̄P(τ,j) and L̄C(τ,j).

We prove the lemma by constructing the desired K-algebra homomorphism

φ : L′P(τ,j) → L̄P(τ,j)
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recursively where (h1, n) P (τ, j) P (s1, n). The base case, (τ, j) = (h1, n), is trivial since

then

L′P(h1,n) = L = L̄P(h1,n).

Now assume (h1, n) C (τ, j) P (s1, n) and that we have a K-algebra homomorphism φ′ :

L′C(τ,j) → L̄C(τ,j) mapping aξi 7→ bξi for (ξ, i) C (τ, j). If (τ, j) is not a leader of L′, then aτj

is transcendental over L′C(τ,j), and so φ′ extends to the desired K-algebra homomorphism

φ : L′P(τ,j) → L̄P(τ,j).

Hence, it remains to show the case when (τ, j) is a leader of L′. In this case, since L′ is

a generic prolongation of L, (τ, j) is a nonminimal leader of L′, and moreover aτj = (D′)ζaηj

for some minimal leader (η, j) of L and nonzero ζ ∈ Zm>0. Let f be the minimal polynomial

of aηj ∈ L over K(aξi : (ξ, i) C (η, j)). The standard argument (in characteristic zero) to

compute the derivative of an algebraic element in terms of its minimal polynomial yields a

polynomial g over L′C(τ,j) and a positive integer l such that

aτj = (D′)ζaηj =
g(aηj )

(f ′(aηj ))
l
∈ L′C(τ,j).

Similarly, there is a polynomial g̃ over L̄C(τ,j) such that

bτj = D̄ζaηj =
g̃(aηj )

(f ′(aηj ))
l
∈ L̄C(τ,j),

and, moreover, one such g̃ is obtained by applying φ′ to the coefficients of g. This latter

observation, together with the two equalities above, imply that L′P(τ,j) = L′C(τ,j) and that

φ′(aτj ) = bτj . Hence, in the case when aτj is a leader, setting φ := φ′ yields the desired

K-algebra homomorphism.



www.manaraa.com

CHAPTER 2. DIFFERENTIAL KERNELS 18

Definition 2.2.6. An n-tuple g = (g1, . . . , gn) contained in a differential field extension

(M, ∂′1, . . . , ∂
′
m) of (K,∆) is said to be a regular realization of the differential kernel L if the

tuple

((∂′)ξgi : (ξ, i) ∈ Γ(h))

is a generic specialization of (aξi : (ξ, i) ∈ Γ(h)) over K. The tuple g is said to be a principal

realization of L if there exists a sequence of differential kernels L = L0,L1, . . . , each a generic

prolongation of the preceding, such that g is a regular realization of each Li.

Remark 2.2.7. Note that the differential kernel L has a regular realization if and only if there

exists a differential field extension (M, ∂′1, . . . , ∂
′
m) of (K,∆) such that L is a subfield of M

and ∂′ka
ξ
i = aξ+k

i for all (ξ, i) ∈ Γ(h− 1) and 1 6 k 6 m. In this case, g := (a01 , . . . , a
0
n) is a

regular realization of L, and g will be a principal realization of L if and only if the minimal

leaders of L and K〈g〉 coincide (here K〈g〉 ⊆ L denotes the smallest differential field that

contains both K and g).

Lemma 2.2.8. If f is a principal realization and g is a regular realization of the differential

kernel L, then g is a differential specialization of f .

Proof. Since f is a principal realization of L, there exists a differential field extension

(M, ∂′1, . . . , ∂
′
m) of K containing L = K(aξi : (ξ, i) ∈ Γ(h)) such that ∂′ka

ξ
i = aξ+k

i for all

(ξ, i) ∈ Γ(h− 1) and K〈a01 , . . . , a0n〉 has the same minimal leaders as L. Similarly, since g is a

regular realization of L, there is a differential field extension (N , ∂̄1, . . . , ∂̄m) of K containing

L such that ∂̄ka
ξ
i = aξ+k

i .

Now, for each s > h, the differential kernel given by

L′s := K((∂′)ηa0i : (η, i) ∈ Γ(s))
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is a generic prolongation of L, and the one given by

L̄s := K(∂̄ηa0i : (η, i) ∈ Γ(s))

is a prolongation of L. By Lemma 2.2.5, L̄s is a specialization of L′s. Since this holds for all

s > h, the desired differential specialization is obtained by taking the union of this chain.

Remark 2.2.9. One can similarly define prolongations, and regular and principal realizations,

if the differential kernel is of the form K(aξi : (ξ, i) C (τ, j)) for some fixed (τ, j) ∈ Zm>0 × n.

In addition, Lemmas 2.2.5 and 2.2.8 also hold in this case, with the same proofs.

In the ordinary case, m = 1, every differential kernel has a regular realization (in fact

a principal one) [30, Proposition 3]. However, if m > 1, regular realizations do not always

exist. Moreover, as the following example shows, there are differential kernels of length h

with a prolongation of length 2h− 1 but with no regular realization.

Example 2.2.10. Working with m = 2 and n = 1, set K = Q. Let

L = Q(a(i,j) : i+ j 6 h)

where the a(i,j)’s are all algebraically independent over Q except for the algebraic relations

a(0,h) = a(0,h−1) and a(h,0) = (a(0,h−1))2. Set t := a(0,h−1), so a(0,h) = t and a(h,0) = t2. The

field L is a differential kernel over Q of length h. Moreover, it has a (generic) prolongation

of length 2h − 1. However, it does not have a prolongation of length 2h (and consequently

no regular realization of L exists). Indeed, if L had a prolongation

L′ = Q(a(i,j) : i+ j 6 2h)
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with derivations D′1 and D′2, then, as D′2(t) = t, we would have

D′1a
(i,h) = a(i+1,h−1)

for 0 6 i 6 h− 1, and

a(h,j) = (D′2)j(t2) = 2jt2

for 1 6 j 6 h− 1. In particular,

D′1a
(h−1,h) = a(h,h−1) = 2h−1t2 and D′2a

(h,h−1) = D′2(2h−1t2) = 2ht2.

This would yield the contradiction

2h−1t2 = D′1a
(h−1,h) = a(h,h) = D′2a

(h,h−1) = 2ht2.

Nonetheless, there are conditions on the minimal leaders of a differential kernel that

guarantee the existence of a regular realization. In [35], Pierce proved results of this type

using different terminology: In his paper differential kernels are referred to as fields satisfying

the differential condition, and a regular realization of L is referred to as the existence of a

differential field extension of K compatible with L. Using the terminology of differential

kernels [35, Theorem 4.3] translates to:

Theorem 2.2.11. Let L = K(aξi : (ξ, i) ∈ Γ(h)) be a differential kernel over K for some

even integer h > 0. Suppose further that

(†) for every minimal leader (ξ, i) of L we have that deg(ξ) 6 h
2
.

Then the differential kernel L has a regular realization.
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Note that a differential kernel L has a regular realization if and only if it has prolongations

of any length. Thus the natural question to ask is: Is the existence of a regular realization

guaranteed as long as one can find prolongations of a certain (finite) length? And if so, how

can one compute this length, and what is its complexity? To answer these questions we will

need the following terminology. Given an increasing function f : Z>0 → Z>0, we say that f

bounds the degree growth of a sequence α1, . . . , αk of elements of Zm>0 × n if deg(αi) 6 f(i),

for i = 1, . . . , k. We let Lnf,m be the maximal length of an antichain sequence of Zm>0 × n of

degree growth bounded by f . The existence of the number Lnf,m follows from generalizations

of Dickson’s lemma [11]. Recently, in [31], an algorithm that computes the exact value

of Lnf,m was established (in fact, an antichain sequence of degree growth bounded by f of

maximal length was built).

The following is a consequence of Theorem 2.2.11 (for details see the proof of [35, Theorem

4.10] or the discussion after Fact 3.6 of [12]).

Theorem 2.2.12. Suppose L = K(aξi : (ξ, i) ∈ Γ(h)) is a differential kernel over K. Let

f : Z>0 → Z>0 be defined as f(i) = 2ih. If L has a prolongation of length 2Lnf,m+1h, then L

has a regular realization.

The above theorem motivates the following definition:

Definition 2.2.13. Given integers m,n > 0 and h > 0, we let T nh,m be the smallest integer

> h with the following property: For any differential field (K, ∂1, . . . , ∂m) of characteristic

zero with m commuting derivations and any differential kernel L over K of length h, if L

has a prolongation of length T nh,m, then L has a regular realization.

Theorem 2.2.12 shows that

T nh,m 6 2Lnf,m+1h where f(i) = 2ih.
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This upper bound of T nh,m is not sharp. For instance, [30, Proposition 3] shows that T nh,1 = h,

while 2Lnf,1+1h = 2n+1h. Also, by Proposition 3.1.6(3) below we have that T 1
h,2 = 2h, while

2L1
f,2+1h = 22h+2h. In general, for m > 1, a formula that computes the value of T nh,m has

not yet been found, and thus establishing computationally practical upper bounds is an

important problem.
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Chapter 3

Realizations of Differential Kernels

In Chapter 2, it was shown that the previously known upper bounds for the number of pro-

longations of a differential kernel needed to guarantee the existence of a regular realization,

T nh,m, were not computationally viable even for small numbers of derivations. In this chap-

ter a new, recursive upper bound for T nh,m is given that can be computed in many realistic

cases. In Section 3.1, the new upper bound, Cn
h,m, is defined from a theoretical standpoint

and is shown in Theorem 3.1.4 to be an upper bound for T nh,m. In Section 3.2, the main

combinatorial result is proven (Theorem 3.2.7). Then, in Section 3.3, a recursive algorithm

to construct Cn
h,m is given (Theorem 3.3.9). Finally, in Section 3.4, some specific values of

Cn
h,m are discussed in relation to previously known upper bounds for T nh,m.

3.1 On the existence of principal realizations

In this section we give an improvement of Theorems 2.2.11 and 2.2.12. This will come from

replacing condition (†) by a weaker condition that guarantees the existence of a principal

realization of a given differential kernel. We use the notation of Chapter 2; in particular,

(K, ∂1, . . . , ∂m) is a differential field of characteristic zero with m commuting derivations.

23
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Given two elements η = (u1, . . . , um) and τ = (v1, . . . , vm) in Zm>0, we let

LUB(η, τ) = (max(u1, v1), . . . ,max(um, vm))

be the least upper bound of η and τ with respect to the order 6. Given an antichain sequence

ᾱ of Zm>0 × n we let

γ(ᾱ) = {(LUB(η, τ), i) : η 6= τ with (η, i), (τ, i) ∈ ᾱ for some i}.

Clearly, if for some integer h > 0 we have ᾱ ⊆ Γ(h), then γ(ᾱ) ⊆ Γ(2h). For a field extension

of K of the form L = K(aξi : (ξ, i) ∈ Γ(h)), we let γ(L) denote γ(ᾱ) where ᾱ = (α1, . . . , αk)

is the antichain sequence consisting of all minimal leaders of L ordered increasingly with

respect to P. Note that

γ(L) ⊆ Γ(2h).

Theorem 3.1.1. Let L = K(aξi : (ξ, i) ∈ Γ(h)) be a differential kernel over K. Suppose

further that

(]) For every (τ, l) ∈ γ(L) \ Γ(h) and 1 6 i < j 6 m such that (τ − i, l) and (τ − j, l)

are leaders, there exists a sequence of minimal leaders (η1, l), . . . , (ηs, l) such that η` 6

τ − k`, with k1 = i, ks = j and some k2, . . . , ks−1, and

deg(LUB(η`, η`+1)) 6 h for ` = 1, . . . , s− 1. (3.1.1)

Then the differential kernel L has a principal realization.
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Remark 3.1.2.

1. One can check that condition (†) of Theorem 2.2.11 implies condition (]). On the other

hand, if m = 2, n = 1, h = 4, and the only minimal leader of L is (3, 0), then condition

(†) does not hold; however, condition (]) holds trivially. Thus, indeed (]) is a weaker

condition on the minimal leaders.

2. The converse of Theorem 3.1.1 does not generally hold (i.e., (]) is not a necessary

condition for the existence of principal realizations). For instance, if m = 2, n = 1,

h = 2, and a(1,0) = a(0,1) = 0, then L has a principal realization but (]) does not hold.

Proof. We construct the principal realization recursively. Let (τ, l) ∈ Zm>0× n with deg(τ) >

h. We want to specify a value for aτl . We assume that we have defined all aξi , where

(ξ, i) C (τ, l), such that the field extension

K(aξi : (ξ, i) C (τ, l))

is a generic prolongation of L.

If (τ − i, l) is not a leader for all 1 6 i 6 m, then set aτl to be transcendental over

K(aξi : (ξ, i) C (τ, l)) and define Dia
τ−i
l := aτl . If there is an i such that (τ − i, l) is a leader,

then the algebraicity of aτ−il over K(aξi : (ξ, i) C (τ − i, l)) determines the value of aτl ; more

precisely, the minimal polynomial of aτ−il determines the value Dia
τ−i
l , and then we must set

aτl := Dia
τ−i
l . All we need to check is that if there is another j such that (τ − j, l) is a leader,

then the value Dja
τ−j
l (determined by the minimal polynomial of aτ−jl ) is equal to Dia

τ−i
l .

We now check that indeed Dia
τ−i
l = Dja

τ−j
l . First assume (τ, l) ∈ γ(L) (the other case

will be considered below). Condition (]) guarantees the existence of a sequence of minimal

leaders (η1, l), . . . , (ηs, l) such that η` 6 τ − k`, with k1 = i, ks = j and some k2, . . . , ks−1,

and satisfying (3.1.1).
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Claim. For every 1 6 ` 6 s− 1, we have Dk`a
τ−k`
l = Dk`+1

a
τ−k`+1

l .

Proof of Claim. If k` = k`+1, then the statement holds trivially. Let k` 6= k`+1 and π =

LUB(η`, η`+1). By (3.1.1), we have deg(π) 6 h < deg(τ). In particular, there is 1 6 k 6 m

such that η`(k) 6 π(k) < τ(k), where ξ(k) denotes the k-entry of ξ. Since k` 6= k`+1, either

k 6= k` or k 6= k`+1; without loss of generality, we assume that k 6= k`. We now prove

that (τ − k` − k, l) is a leader. Since η` 6 τ − k`, η`(k) < τ(k), and k 6= k`, we get that

η` 6 τ − k` − k. So, since (η`, l) is a (minimal) leader, (τ − k` − k, l) is also a leader. This

implies that the derivations Dk` and Dk commute on aτ−k`−kl (see [35, Lemma 4.2]), and so

Dk`a
τ−k`
l = Dk`Dka

τ−k`−k
l = DkDk`a

τ−k`−k
l = Dka

τ−k
l .

If k`+1 = k the result follows from the above equalities. If k`+1 6= k, we can proceed as before

(using the same k) to show that (τ − k`+1 − k, l) is leader, and thus obtain

Dk`+1
a
τ−k`+1

l = Dka
τ−k
l .

This proves the claim.

It now follows from the claim, since k1 = i and ks = j, that Dia
τ−i
l = Dja

τ−j
l , as desired.

Now, for the case when (τ, l) /∈ γ(L). Let (η1, l) and (η2, l) be any pair of minimal leaders such

that η1 6 τ−i and η2 6 τ−j. By definition of γ(L), we have that deg(LUB(η1, η2)) < deg(τ).

One can now proceed as in the proof of the claim, with π = LUB(η1, η2), to show that

Dia
τ−i
l = Dja

τ−j
l .

One continues this recursive construction with the tuple succeeding τ (in the C order).

Note, in each step of this construction, we do not add new minimal leaders, so the prolon-

gations we obtain at each step still satisfy condition (]) and are generic. By the genericity

of each prolongation, this construction yields the desired principal realization of L.
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Let ᾱ = (α1, . . . , αk) be an antichain sequence of Zm>0 × n. For each integer h > 0, let

Γᾱ(h) = {α ∈ ᾱ : α ∈ Γ(h)}.

We define Dh,ᾱ as the smallest integer p > h with the following property:

(]′) For every (τ, l) ∈ γ(Γᾱ(p)) \ Γ(p) and 1 6 i < j 6 m such that (τ − i, l) > β1 and

(τ−j, l) > β2 for some β1, β2 ∈ Γᾱ(p), there exists a sequence (η1, l), . . . , (ηs, l) in Γᾱ(p)

such that η` 6 τ − k`, with k1 = i, ks = j and some k2, . . . , ks−1, and

deg(LUB(η`, η`+1)) 6 p for ` = 1, . . . , s− 1. (3.1.2)

Note that if r > h is such that ᾱ ⊆ Γ(r), then Dh,ᾱ 6 2r.

Remark 3.1.3. Note that, given h > 0 and an antichain sequence ᾱ of Zm>0 × n, Ds,ᾱ = Dh,ᾱ

for any h 6 s 6 Dh,ᾱ.

Finally, we set

Cn
h,m := max{Dh,ᾱ : ᾱ is an antichain sequence of Zm>0 × n}.

In Section 3.3 we will see that in fact Cn
h,m <∞.

We can now prove the main result of this section.

Theorem 3.1.4. Let h be a nonnegative integer. Suppose L = K(aξi : (ξ, i) ∈ Γ(h)) is

a differential kernel over K. If L has a prolongation of length Cn
h,m, then there is some

h 6 r 6 Cn
h,m such that the differential kernel K(aξi : (ξ, i) ∈ Γ(r)) has a principal realization.

In particular, L has a regular realization and so

T nh,m 6 Cn
h,m.
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Proof. Let ᾱ = (α1, . . . , αk) be the antichain sequence of minimal leaders of the prolongation

K(aξi : (ξ, i) ∈ Γ(Cn
h,m)).

By definition of Dh,ᾱ (see property (]′) above), if we set r := Dh,ᾱ, then r has the following

three properties:

(i) r > h

(ii) Cn
h,m > r, so L′ := K(aξi : (ξ, i) ∈ Γ(r)) is a differential kernel over K

(iii) Since Γᾱ(r) is equal to the set of minimal leaders of L′, we have that for every (τ, l) ∈

γ(L′) \ Γ(r) and 1 6 i < j 6 m such that τ − i, τ − j are leaders of L′, there exists a

sequence (η1, l), . . . , (ηs, l) of minimal leaders of L′ such that η` 6 τ − k`, with k1 = i,

ks = j and some k2, . . . , ks−1, and

deg(LUB(η`, η`+1)) 6 r for ` = 1, . . . s− 1.

Property (iii) is precisely saying that L′ satisfies condition (]) of Theorem 3.1.1. Thus,

properties (ii) and (iii), together with Theorem 3.1.1, yield a principal realization of L′.

Finally, property (i) implies this principal realization of L′ is a regular realization of L.

Remark 3.1.5. So far, to the author’s knowledge, there are no known cases where T nh,m <

Cn
h,m. It is thus an interesting problem to determine whether or not these two numbers are

equal. Such open questions on the optimality of Cn
h,m are part of an ongoing project.

In Sections 3.2 and 3.3 we work towards building a recursive algorithm that computes

the value of Cn
h,m. For now, we prove some basic cases.
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Proposition 3.1.6.

1. Cn
0,m = 0.

2. For any h > 0, Cn
h,1 = h.

3. For any h > 0, C1
h,2 = 2h. Consequently, by Example 2.2.10, T 1

h,2 = 2h.

Proof.

(1) This is clear.

(2) For any antichain sequence ᾱ of Z>0× n, condition (]′) above is trivially satisfied for any

integer p > 0 since in this case γ(Γᾱ(p)) = ∅. Hence, Dh,ᾱ = h, and so Cn
h,1 = h.

(3) First, to see that C1
h,2 > 2h, consider the antichain sequence ᾱ = ((h, 0), (0, h)) of Z2

>0.

Since γ(ᾱ) = {LUB((h, 0), (0, h))} = {(h, h)}, the integer 2h satisfies condition (]′), and it

is indeed the smallest one as ᾱ consists of exactly two elements. Hence, Dh,ᾱ = 2h and so

C1
h,2 > 2h.

Now we prove C1
h,2 6 2h. Towards a contradiction assume there is an antichain sequence

ᾱ of Z2
>0 such that Dh,ᾱ > 2h. First, let us recall a basic fact about blocks of Z2

>0. Recall

that a block of Z2
>0 is a subset of the form

{(u1, u2), (u1 + 1, u2 − 1), . . . , (u1 + c, u2 − c)}

for some u1, u2, c ∈ Z>0. Suppose B is a set of elements of Z2
>0 all of degree d > 0, and let

B′ be those elements of degree d + 1 which are > some element in B. One can check that

|B′| > |B|+ 1 and |B′| = |B|+ 1 if and only if B is a block.

Now, for each integer i > 0, we let

Mᾱ(i) = |{ξ ∈ Z2
>0 : deg(ξ) = i and ξ > τ for some τ ∈ ᾱ}|.
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Note that |Mᾱ(h)| > 2. Indeed, if this were not the case the integer h would satisfy condition

(]′) and so Dh,ᾱ would equal h, contradicting the fact that Dh,ᾱ > 2h. We now claim that

|Mᾱ(i+ 1)| > |Mᾱ(i)|+ 2 for h 6 i < 2h. If this were not the case, then, as we are working

in Z2
>0, |Mᾱ(i+ 1)| = |Mᾱ(i)|+ 1. However, as we pointed out above, the latter could only

happen if Mᾱ(i) is a block and ᾱ has no elements of degree i+ 1. But this would imply that

the integer i + 1 6 2h satisfies condition (]′), contradicting again the fact that Dh,ᾱ > 2h.

Putting the previous inequalities together we get Mᾱ(i) > 2(i + 1 − h) for h 6 i 6 2h. In

particular, Mᾱ(2h) > 2h + 2. However, this is impossible since the number of elements of

degree 2h of Z2
>0 is 2h+ 1, and so we have reached the desired contradiction.

3.2 On Macaulay’s theorem

In this section we prove a key result on the Hilbert-Samuel function that will be used to

derive Corollary 3.2.9 below. This will then be used in Section 3.3 to provide an algorithm

that computes the value of Cn
h,m.

Recall, from previous sections, that we denote Zm>0 equipped with the product order by

(Zm>0,6), and we denote Zm>0 equipped with the (left) degree-lexicographic order by (Zm>0,P).

We start by recalling some basic notions (for details see [6, Chap.4, §2]). A subset M of Zm>0

is said to be compressed if whenever ξ, η ∈ Zm>0 and deg(ξ) = deg(η) we have

(ξ ∈M and ξ C η) =⇒ (η > ζ for some ζ ∈M) .

If d is a positive integer, M is said to be a d-segment of Zm>0 if all the elements of M have

degree d and, given ξ, η ∈ M with ξ C η, if ξ ∈ M then η ∈ M . We note that if M is

compressed and

N := {ξ ∈ Zm>0 : deg(ξ) = d and ξ > ζ for some ζ ∈M},
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then N is a d-segment of Zm>0.

Given positive integers a and d, one can write a uniquely in the form

a =

(
kd
d

)
+

(
kd−1

d− 1

)
+ . . .+

(
kj
j

)
, (3.2.1)

where kd > kd−1 > . . . > kj > j > 1 for some j (see [6, Lemma 4.2.6]). One refers to (3.2.1)

as the d-binomial representation of a. Now define

a〈d〉 :=

(
kd + 1

d+ 1

)
+

(
kd−1 + 1

d

)
+ . . .+

(
kj + 1

j + 1

)
,

and 0〈d〉 := 0.

We now recall the Hilbert-Samuel function. Given any subset M of Zm>0, the Hilbert-

Samuel function HM : Z>0 → Z>0 is defined as

HM(d) = |{ξ ∈ Zm>0 : deg(ξ) = d and ξ � η for all η ∈M}|.

Macaulay’s theorem on the Hilbert-Samuel function states the following (for a proof see

Corollary 4.2.9 and Theorem 4.2.10(c) from [6]).

Theorem 3.2.1. For any subset M of Zm>0, and d > 0, we have that

HM(d+ 1) 6 HM(d)〈d〉.

Moreover, if M is compressed and M ⊆ Γ(d) (i.e., deg(ξ) 6 d for all ξ ∈M), then

HM(d+ 1) = HM(d)〈d〉.
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We will also make use of the function SM which is complementary to the Hilbert-Samuel

function; that is, for any subset M of Zm>0, SM : Z>0 → Z>0 is given by

SM(d) = |{ξ ∈ Zm>0 : deg(ξ) = d and ξ > η for some η ∈M}|.

Note that

SM(d) +HM(d) = |{ξ ∈ Zm>0 : deg(ξ) = d}| =
(
m− 1 + d

d

)
. (3.2.2)

For any M ⊆ Zm>0, we define (1, . . . ,m) ·M to be the set containing all m-tuples of the

form (u1, . . . , uj + 1, . . . , um) with (u1, . . . , um) ∈M and j = 1, . . . ,m. More generally, for a

sequence of integers 1 6 i1 < . . . < is 6 m, we let (i1, . . . , is) ·M be the set (u1, . . . , uij +

1, . . . , um) with (u1, . . . , um) ∈M and j = 1, . . . , s. We now recall Macaulay’s function a(m).

For integers a > 0 and d > 0, with a 6 |{ξ ∈ Zm>0 : deg(ξ) = d}|, we let

a(m) := |(1, . . . ,m) ·Na,d| = SNa,d(d+ 1), (3.2.3)

where Na,d is the subset of Zm>0 consisting of the a largest elements of Γ(d) with respect to

P. Note that, by our assumption on a and d, the set Na,d is a d-segment of Zm>0 (as defined

above); in particular, it is compressed. To justify our notation in (3.2.3), we must show

that the value a(m) is independent of d. To that end, let d′ = d + p, for a positive integer

p. Clearly, Na,d′ = (1)p · Na,d, where the latter denotes the set of (u1 + p, . . . , um) with

(u1, . . . , um) ∈ Na,d. Then we have

(1, . . . ,m) ·Na,d′ = (1)p · ((1, . . . ,m) ·Na,d) ,

and hence |(1, . . . ,m) ·Na,d′ | = |(1, . . . ,m) ·Na,d|, as desired.
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As a consequence of the moreover clause of Macaulay’s theorem (Theorem 3.2.1), for

integers b > 0 and d > 0, with b 6 |{ξ ∈ Zm>0 : deg(ξ) = d}| =
(
m−1+d

d

)
, we have that

b〈d〉 = |{ξ ∈ Zm>0 : deg(ξ) = d+ 1 and ξ /∈ (1, . . . ,m) ·Na,d}| = HNa,d(d+ 1),

where a :=
(
m−1+d

d

)
− b. This implies that b〈d〉 =

(
m+d
d+1

)
− a(m); in particular, for any M we

have

HM(d)〈d〉 =

(
m+ d

d+ 1

)
− SM(d)(m). (3.2.4)

Thus, with the above notation, Theorem 3.2.1 can be reformulated as

Corollary 3.2.2. For any subset M of Zm>0, and d > 0, we have that

SM(d+ 1) > SM(d)(m).

Moreover, if M is compressed and M ⊆ Γ(d), then

SM(d+ 1) = SM(d)(m).

Remark 3.2.3. The formulation of this corollary is quite similar to how Macaulay originally

presented his theorem in the 1920s (see [32] or [41]).

Proof. By (3.2.2), (3.2.4) and Theorem 3.2.1, we have

SM(d+ 1) =

(
m+ d

d+ 1

)
−HM(d+ 1)

>

(
m+ d

d+ 1

)
−HM(d)〈d〉

= SM(d)(m).

For the moreover clause one simply replaces the above inequality by equality.
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We now fix some notation that will be used in the proof of Theorem 3.2.7 below.

Definition 3.2.4. Let d be a nonnegative integer and M a subset of Zm>0. Given τ ∈ Zm>0 of

deg(τ) > d + 1, and distinct ξ, ζ ∈ M ∩ Γ(d) both < τ (recall that < denotes the product

order of Zm>0), we say that ξ and ζ are τd,M -connected if there is a sequence of elements

η1, . . . , ηs of M ∩ Γ(d) all < τ with η1 = ξ, ηs = ζ, and such that for all 1 6 i 6 s− 1,

deg(LUB(ηi, ηi+1)) 6 d+ 1.

Given an integer d > 0, consider the following condition on M ⊆ Zm>0:

(∗) There are two distinct elements ξ, ζ ∈M ∩Γ(d) such that for every sequence η1, . . . , ηs

of elements ofM∩Γ(d) all< LUB(ξ, ζ) with η1 = ξ and ηs = ζ, there exists 1 6 i 6 s−1

such that deg(LUB(ηi, ηi+1)) > d+ 1.

Remark 3.2.5. Suppose M satisfies condition (∗) for a fixed d. Then, for any pair of distinct

elements ξ, ζ ∈ M ∩ Γ(d) given as in condition (∗), we have that deg(LUB(ξ, ζ)) > d + 1.

Hence, M∩Γ(d) contains two distinct elements ξ and ζ that are not LUB(ξ, ζ)d,M -connected.

Moreover, such a pair (ξ, ζ) can be chosen with the following additional property: for any

two distinct elements η, π ∈ M ∩ Γ(d) both < LUB(ξ, ζ), either η and π are LUB(ξ, ζ)d,M -

connected, or LUB(η, π) = LUB(ξ, ζ). To see this, suppose there exist distinct ξ′, ζ ′ ∈ M ∩

Γ(d) both < LUB(ξ, ζ) that are not LUB(ξ, ζ)d,M -connected but LUB(ξ′, ζ ′) 6= LUB(ξ, ζ).

Then LUB(ξ′, ζ ′) < LUB(ξ, ζ). In this case, we replace the pair (ξ, ζ) with the pair (ξ′, ζ ′).

This process will eventually produce the desired pair (after finitely many steps, since at each

step the degree of LUB(ξ, ζ) decreases).

We will need the following technical result of Sperner on the Macaulay function (see [41,

§3, p.196]).
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Lemma 3.2.6. Let A,B,C be nonnegative integers. If A > 0, A = B + C, and C(m−1) <

A(m) − A, then

B(m) + C(m−1) > A(m).

We are finally ready to prove the main theorem of this section, which can be regarded as

the key result of this chapter.

Theorem 3.2.7. Let d > 0 be an integer and M a subset of Zm>0. If M satisfies condition

(∗) above, then we have the following strict inequality

HM(d+ 1) < HM(d)〈d〉.

Proof. We first make some simplifications. By definition of the Hilbert-Samuel function,

HM(d) = HN(d) and HM(d+ 1) 6 HN(d+ 1),

where N = {ξ ∈ Zm>0 : deg(ξ) = d and ξ > η for some η ∈ M}, and so it would suffice to

prove the theorem for N . Hence, we assume that all the elements of M have degree d.

Note that the desired inequality is equivalent to

SM(d+ 1) > SM(d)(m). (3.2.5)

Indeed, if (3.2.5) holds, by (3.2.2) and (3.2.4), we would have

HM(d+ 1) =

(
m+ d

d+ 1

)
− SM(d+ 1) <

(
m+ d

d+ 1

)
− SM(d)(m) = HM(d)〈d〉.

Thus, it suffices to prove (3.2.5). Note that, by our assumption that all the elements of M

have degree d, we have |M | = SM(d) and |(1, . . . ,m) ·M | = SM(d+ 1).
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Now let (ξ, ζ) be a pair of distinct elements of M as in Remark 3.2.5 and set

τ := LUB(ξ, ζ) = (v1, . . . , vm);

that is, ξ = (a1, . . . , am) and ζ = (b1, . . . , bm) are elements of M that are not τd,M -connected,

and for any two distinct elements η, π ∈ M both < τ , either η and π are τd,M -connected or

LUB(η, π) = τ . We assume that a1 < b1; if not simply permute the variables.

Let A := SM(d) = |M | and F := SM(d+ 1) = |(1, . . . ,m) ·M |. Thus, we must show that

F > A(m).

We prove the result by induction on the size of A. Since M has at least two elements, the

base case is A = 2 and so M = {ξ, ζ}. In this case, A(m) = 2m − 1, and saying that ξ and

ζ are not τd,M -connected is equivalent to saying that deg(τ) > d + 1. But then we cannot

have ξ + i = ζ + j for any 1 6 i, j 6 m, so F = 2m > A(m).

Now we prove the induction step, and so assume A > 3. Let (u1, . . . , um) be the least

element of M with respect to the (left) degree-lexicographical order P. We can then write

M = M0 ∪M1,

where M0 consists of all (t1, . . . , tm) ∈M with t1 > u1, and M1 consists of all (t1, . . . , tm) ∈M

with t1 = u1. Note that M0 ∩M1 = ∅. We then have the following inclusions:

(1) ·M ∪ (2, . . . ,m) ·M1 ⊆ (1, . . . ,m) ·M, (3.2.6)

(1, . . . ,m) ·M0 ∪ (2, . . . ,m) ·M1 ⊆ (1, . . . ,m) ·M. (3.2.7)
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In addition we have that

(1) ·M ∩ (2, . . . ,m) ·M1 = ∅ and (1, . . . ,m) ·M0 ∩ (2, . . . ,m) ·M1 = ∅.

We now prove that, under our assumptions, the inclusion (3.2.6) is strict. First note that

all tuples π = (c1, . . . , cm) ∈ M such that π < τ and c1 = a1 < b1 are τd,M -connected to

ξ, otherwise this would contradict the choice of τ as LUB(ξ, π) 6= τ . Let a be the smallest

integer with a > a1 and such that there is π = (c1, . . . , cm) ∈ M with π < τ , not τd,M -

connected to ξ, and c1 = a. Note that a 6 b1. Also, note that there is 1 < i 6 m such that

ci < vi (if not, we would have π > ξ). Set

ρ = (c1 − 1, c2, . . . , ci + 1, . . . , cm).

Then, ρ is not in M . Indeed, it it were, π would be τd,M -connected to ξ. This shows that

π + i ∈ (1, . . . ,m) ·M but π + i /∈ (1) ·M ∪ (2, . . . ,m) ·M1, as desired.

Now we prove that if M0 does not satisfy condition (∗), then containment (3.2.7) is strict.

In this case, we must have ξ ∈ M1. Also, note that for every 1 < i 6 m such that ai > 0, if

we set

ν = (a1 + 1, a2, . . . , ai − 1, . . . , am),

then ν < τ but it cannot be in M0. Indeed, if it were, then ν and ζ would witness that M0

satisfies condition (∗) since ξ and ν are τd,M -connected. This shows that ξ+1 ∈ (1, . . . ,m)·M

but ξ + 1 /∈ (1, . . . ,m) ·M0 ∪ (2, . . . ,m) ·M1, as desired.

Let B = |M0| and let C = |M1|. Since we have shown that inclusion (3.2.6) is strict, an

application of Corollary 3.2.2 yields

F > A+ C(m−1).
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On the other hand, if inclusion (3.2.7) is strict, another application of Corollary 3.2.2 yields

F > B(m) + C(m−1).

Finally, if (3.2.7) is an equality, then we have shown that M0 must satisfy (∗). Since B < A

(as M0 (M), by induction we have that in this case |(1, . . . ,m) ·B| > B(m), and so

F > B(m) + C(m−1).

Therefore, we always have that

F > A+ C(m−1) and F > B(m) + C(m−1). (3.2.8)

If C(m−1) > A(m) − A, then it follows from the first inequality of (3.2.8) that F > A(m).

For the remaining case C < A(m) − A, since A > 3 and A = B + C, Lemma 3.2.6 yields

B(m) + C(m−1) > A(m). It now follows from the second inequality of (3.2.8) that F > A(m).

This concludes the proof.

Remark 3.2.8.

1. Theorem 3.2.7 seems to be of independent interest. It states that a necessary condition

for the Hilbert-Samuel function of M to have maximal growth at d + 1 is that every

pair ξ, ζ of distinct elements of M ∩ Γ(d) is LUB(ξ, ζ)d,M -connected.

2. For m = 2, the converse of Theorem 3.2.7 holds. Indeed, if M is a subset of Z2
>0 all of

whose elements have degree d, then HM(d+ 1) = HM(d)〈d〉 if and only if M is a block

(i.e., M is of the form {(u1, u2), (u1 +1, u2−1), . . . , (u1 + c, u2− c)} for some u1, u2, c ∈

Z>0), and if M is a block then M does not satisfy condition (∗). On the other hand,

when m > 3, the converse of Theorem 3.2.7 does not generally hold. For a (counter-)
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example, consider the case m = 3 and M = {ξ ∈ Z3
>0 : deg(ξ) = 2} \ {(1, 1, 0)}. One

can easily check that this M does not satisfy condition (∗); however,

HM(3) = 0 < 1 = HM(2)〈2〉.

To finish this section, we want to connect the previous discussion to our work with

antichains from previous sections. Given an antichain sequence ξ̄ = (ξ1, . . . , ξk) of Zm>0, for

each i > 0 the Hilbert-Samuel function H i
ξ̄

: Z>0 → Z>0 is defined as

H i
ξ̄(d) = |{η ∈ Zm>0 : deg(η) = d and η 6> ξj for all j 6 i for which ξj is defined}|.

If for each i > 0 we let

Mi = {η ∈ Zm>0 : deg(η) = d and η > ξj for some ξj with j 6 i},

we see then that HMi
(d) = H i

ξ̄
(d). Hence, a direct consequence of Theorem 3.2.7 is the

following:

Corollary 3.2.9. Let d > 1 be an integer and ξ̄ = (ξ1, . . . , ξk) an antichain sequence of Zm>0.

If Hk
ξ̄
(d) = Hk

ξ̄
(d− 1)〈d−1〉, then for each pair ξi 6= ξj, both having degree at most d− 1, there

exists a sequence η1, . . . , ηs of distinct elements of Γξ̄(d− 1) = ξ̄ ∩Γ(d− 1) all < LUB(ξi, ξj)

such that η1 = ξi, ηs = ξj, and

deg(LUB(η`, η`+1)) 6 d, for all ` = 1, . . . , s− 1.
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3.3 An algorithm to compute Cn
h,m

In this section we prove that there is a recursive algorithm that computes Cn
h,m. We first

deal with the case n = 1 (Theorem 3.3.5), and then we prove that for n > 1 the value is

obtained by compositions in the “h” input (Theorem 3.3.9).

We will make use of the following combinatorial lemma (for a proof see [31, Lemma 3.12]).

Lemma 3.3.1. Suppose a1, . . . , at and b1, . . . , bs are sequences of nonnegative integers such

that b1 = . . . = bs−1 > bs and b1 > ai for all i 6 t. If a1 + . . . + at 6 b1 + . . . + bs, then, for

every integer d > 0, we have that

a
〈d〉
1 + . . .+ a

〈d〉
t 6 b

〈d〉
1 + . . .+ b〈d〉s .

Recall from Section 2.2 that for any increasing function f : Z>0 → Z>0 we say f bounds

the degree growth of a sequence α1, . . . , αk of Zm>0 × n if deg(αi) 6 f(i) for all i = 1, . . . , k.

Also, Lnf,m denotes the maximal length of an antichain sequence of Zm>0× n of degree growth

bounded by f . In [31] an algorithm computing the value of Lnf,m was established and an

antichain sequence of maximal length was built. We discuss this in more detail below.

3.3.1 The case n = 1

Throughout this subsection we let g : Z>0 → Z>0 be the increasing function defined as

g(1) = h and g(i) = i+ h− 2 for i > 2. We will prove that

C1
h,m = L1

g,m + h− 1.

In Proposition 3.1.6 we already proved that this equality holds in the case h = 0 or m = 1.

We now assume h > 1 and m > 2. Note that in this case we have L1
g,m > 2, and so the
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above equality is equivalent to

C1
h,m = g(L1

g,m) + 1. (3.3.1)

Let µ̄ = (µ1, . . . , µL) be the antichain sequence defined recursively as follows:

µ1 = max
P
{ξ ∈ Zm>0 : deg(ξ) = g(1)},

and, as long as it is possible,

µi = max
P
{ξ ∈ Zm>0 : deg(ξ) = g(i) and ξ 6> µ1, . . . , µi−1}.

In [31, §3.2], it is shown that µ̄ is a compressed antichain sequence of Zm>0 having length

L = L1
g,m (i.e., µ̄ is of maximal length among antichain sequences of Zm>0 with degree growth

bounded by g). It is also observed that HL
µ̄ (deg(µL)) = HL

µ̄ (g(L)) = 0, where recall that H i
µ̄

denotes the Hilbert-Samuel function of µ̄, that is, for i, d > 0,

H i
µ̄(d) = |{ξ ∈ Zm>0 : deg(ξ) = d and ξ 6> µj for all j 6 i for which µj is defined}|.

The antichain sequence µ̄ can be more explicitly constructed as follows:

(i) if µi = (u1, . . . , us, 0, . . . , 0, um) with s < m− 1 and us > 0, then

µi+1 = (u1, . . . , us − 1, g(i+ 1)− g(i) + um + 1, 0, . . . , 0)

(ii) if µi = (u1, . . . , um−1, um) with um−1 > 0, then

µi+1 = (u1, . . . , um−1 − 1, g(i+ 1)− g(i) + um + 1).
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Define the function Ψg,m : Z>0 × Zm>0 → Z>0 by the following relations:



Ψg,m(i, (0, . . . , 0, um)) = i

Ψg,m(i− 1, (u1, . . . , us, 0, . . . , 0, um))

= Ψg,m(i, (u1, . . . , us − 1, g(i)− g(i− 1) + um + 1, 0, . . . , 0)), s < m− 1, us > 0

Ψg,m(i− 1, (u1, . . . , um))

= Ψg,m(i, (u1, . . . , um−1 − 1, g(i)− g(i− 1) + um + 1)), um−1 > 0.

(3.3.2)

Then by the recursive construction of µ̄, one obtains

Proposition 3.3.2 ([31, Corollary 3.10]). With the above terminology,

L1
g,m = Ψg,m(1, (g(1), 0 . . . , 0)).

For example, when m = 2, the sequence µ̄ is given by

µ1 = (h, 0), µ2 = (h− 1, 1), µ3 = (h− 2, 3), µ4 = (h− 3, 5), . . . , µh+1 = (0, 2h− 1),

and so L = L1
g,2 = h+ 1.

By the above discussion, it suffices to establish (3.3.1) to prove that there is a recursive

algorithm that computes the value of C1
h,m. We first prove that C1

h,m > g(L1
g,m) + 1.

Proposition 3.3.3. With µ̄ as above, we have Dh,µ̄ = g(L1
g,m) + 1 (see Section 3.1 for the

definition of Dh,µ̄). In particular, C1
h,m > g(L1

g,m) + 1.
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Proof. For each i = 1, . . . , L, we let ξ̄i be the antichain sequence (µ1, . . . , µi). Recall that

L = L1
g,m. It suffices to prove

Dh,ξ̄i = deg(µi) + 1 for i = 2, . . . , L. (3.3.3)

Indeed, if (3.3.3) holds, then taking i = L yields Dh,µ̄ = deg(µL) + 1 = g(L1
g,m) + 1.

We now prove (3.3.3) by induction on i. We actually prove a little bit more: in addition

to (3.3.3), we prove that for each pair of distinct elements µq, µt ∈ ξ̄i

there are η1, . . . , ηs ∈ ξ̄i all < LUB(µq, µt) such that η1 = µq, ηs = µt

and deg(LUB(η`, η`+1)) 6 deg(µi) + 1 for ` = 1, . . . , s− 1.

(3.3.4)

For the base case i = 2, note that

ξ̄2 = (µ1, µ2) = ((h, 0, . . . , 0), (h− 1, 1, 0, . . . , 0)),

so γ(ξ̄2) = {LUB(µ1, µ2)} = {(h, 1, 0 . . . , 0)}. Since deg((h, 1, 0, . . . , 0)) = h+ 1, we see that

Dh,ξ̄2 = h+ 1 = deg(µ2) + 1. To show condition (3.3.4) we simply take η1 = µ1 and η2 = µ2.

For the induction step we fix 3 6 i 6 L, and assume Dh,ξ̄i−1
= deg(µi−1) + 1 and

that condition (3.3.4) holds for i − 1. Since ξ̄i is the concatenation of ξ̄i−1 and µi (with

deg(µi) = deg(µi−1) + 1 = Dh,ξ̄i−1
), we have that Dh,ξ̄i > Dr,ξ̄i−1

= deg(µi). It remains to

show that Dh,ξi 6= deg(µi), that the integer deg(µi) + 1 satisfies condition (]′) of Section 3.1,

and that condition (3.3.4) holds. To do this we will prove that for any q < i there exists

t < i such that

µt < LUB(µq, µi) and deg(LUB(µt, µi)) = deg(µi) + 1, (3.3.5)
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and this will complete the proof. Indeed, suppose (3.3.5) holds, and set ζ = LUB(µt, µi) ∈

γ(ξ̄i), where this t is the one associated to q = 1. Then, there exists 1 6 k 6 m such that

µi = ζ − k, and so there cannot be p < i such that µp 6 ζ − k. Thus, this ζ witnesses the

fact that Dh,ξi 6= deg(µi). On the other hand, observe that if condition (3.3.4) holds then

the integer deg(µi) + 1 satisfies condition (]′). Thus, it would be enough to prove condition

(3.3.4). To do this, let µpBµq be a pair of elements of ξ̄i. If µp, µq ∈ ξ̄i−1, then, by induction,

there is a sequence with the desired properties. So now suppose p = i. By (3.3.5), there

is µt ∈ ξ̄i−1 such that µt < LUB(µp, µq) and deg(LUB(µt, µp)) 6 deg(µi) + 1. Hence, in

this case, the desired sequence can be obtained by starting with η1 = µp, η2 = µt, and then

continuing with an appropriate sequence going from µt to µq (which exists by induction).

Finally, we prove (3.3.5). To do this, let q < i and consider the two possible shapes that

µi can take according to the construction of µ̄ above:

Case 1. Suppose µi−1 = (u1, . . . , um−1, um) with um−1 > 0. Then, by construction of µ̄,

µi = (u1, . . . , um−1 − 1, a), where a = g(i)− u1 − . . .− um−1 + 1.

Let µq = (v1, . . . , vm) and 1 6 l 6 m be the smallest integer such that the L-entry of µq is

strictly larger than the L-entry of µi. Note that we must have l < m. Indeed, since q < i,

the L-entry is the first entry (from left to right) where µq and µi differ. By construction of

µ̄, we can find t < i such that µt has the form (u1, . . . , ul−1, wl, . . . , wm) with wl equal to

1 + (the L-entry of µi), and wp less than or equal to the p-entry of µi for l < p 6 m. Then

µt < LUB(µq, µi) and

deg(LUB(µt, µi)) = deg(µi) + 1.
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Case 2. Suppose µi−1 = (u1, . . . , us, 0, . . . , 0, um) with s < m − 1 and us > 0. Then, by

construction of µ̄,

µi = (u1, . . . , us − 1, a, 0, . . . , 0), where a = g(i)− u1 − · · · − us + 1.

Let µq = (v1, . . . , vm) and 1 6 l 6 m be the smallest integer such that the L-entry

of µq is strictly larger than the L-entry of µi. The same reasoning as in Case 1 yields

that l 6 s. Again by construction of µ̄, we can find t < i such that µt has the form

(u1, . . . , ul−1, wl, . . . , ws, ws+1, 0, . . . , 0) with wl equal to 1 + (the L-entry of µi), and wp less

than or equal to the p-entry of µi for l < p 6 s+ 1. Then µt < LUB(µq, µi) and

deg(LUB(µt, µi)) = deg(µi) + 1.

It remains to show that C1
h,m 6 g(L1

g,m) + 1. To do this, suppose there is an antichain

sequence ξ̄ = (ξ1, . . . , ξM) of Zm>0 such that Dh,ξ̄ > g(L1
g,m) + 1. We must show that then

Dh,ξ̄ 6 g(L1
g,m) + 1.

The following result gives the relationship between the Hilbert-Samuel functions of µ̄ and

ξ̄. This is where Corollary 3.2.9 is used.

Theorem 3.3.4. With µ̄ and ξ̄ as above, we have that

H i
ξ̄(d) 6 H i

µ̄(d)

for all i, d > 0. Consequently, Dh,ξ̄ 6 g(L1
g,m) + 1.

Proof. We proceed by induction on i. For the base case i = 0, we have

H0
ξ̄ (d) =

(
m− 1 + d

d

)
= H0

µ̄(d),
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which is the number of m-tuples of degree d.

Now for the induction step i + 1. Note that, since Dh,ξ̄ > g(L1
g,m) + 1, the sequence ξ̄

contains at least two elements of degree at most h. It follows then that H1
ξ̄
(d) 6 H1

µ̄(d) and

H2
ξ̄
(d) 6 H2

µ̄(d) for all d > 0. Thus, we assume that i > 2. We have that for d < deg(µi+1),

H i+1
ξ̄

(d) 6 H i
ξ̄(d) 6 H i

µ̄(d) = H i+1
µ̄ (d).

Now consider the case when d = deg(µi+1) (note that d > 1 since h > 0 and i > 2).

Claim. Either H i+1
ξ̄

(d) < H i
ξ̄
(d) or H i

ξ̄
(d) < H i

µ̄(d).

Proof of Claim. Towards a contradiction suppose

H i+1
ξ̄

(d) = H i
ξ̄(d) = H i

µ̄(d). (3.3.6)

By the induction hypothesis, Lemma 3.3.1, and Macaulay’s theorem (Theorem 3.2.1),

H i
ξ̄(d− 1)〈d−1〉 6 H i

µ̄(d− 1)〈d−1〉 = H i
µ̄(d) = H i

ξ̄(d).

By Macaulay’s theorem, this inequality implies that H i
ξ̄
(d) = H i

ξ̄
(d− 1)〈d−1〉. This equality,

together with H i+1
ξ̄

(d) = H i
ξ̄
(d), implies that deg(ξj) 6= d for all j 6 i + 1 for which ξj is

defined. This fact and Corollary 3.2.9 imply that

Dh,ξ̄ 6 d = deg(µi+1) < Dh,µ̄.

But this contradicts our assumption on Dh,ξ̄, and so we have proven the claim.
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Hence, either H i+1
ξ̄

(d) < H i
ξ̄
(d) or H i

ξ̄
(d) < H i

µ̄(d). Induction yields then that H i+1
ξ̄

(d) <

H i
µ̄(d), which implies that

H i+1
ξ̄

(d) 6 H i
µ̄(d)− 1 = H i+1

µ̄ (d),

as desired.

Now let d > deg(µi+1). By Macaulay’s theorem

H i+1
ξ̄

(d+ 1) 6 H i+1
ξ̄

(d)〈d〉, (3.3.7)

and

H i+1
µ̄ (d+ 1) = H i+1

µ̄ (d)〈d〉. (3.3.8)

It then follows, by induction on d > deg(µi+1) and Lemma 3.3.1, that

H i+1
ξ̄

(d)〈d〉 6 H i+1
µ̄ (d)〈d〉. (3.3.9)

Thus, putting (3.3.7), (3.3.8), and (3.3.9) together, we get

H i+1
ξ̄

(d+ 1) 6 H i+1
µ̄ (d+ 1),

and the result follows.

For the “consequently” clause, note that setting i = L (recall L = L1
g,m) and d = deg(µL)

yields

HL
ξ̄ (deg(µL)) 6 HL

µ̄ (deg(µL)) = 0.

Thus, for every η ∈ Zm>0 with deg(η) = deg(µL) we have that η > ξj for some ξj ∈ ξ̄. This

implies that Dh,ξ̄ 6 deg(µL) + 1 = g(L1
g,m) + 1.
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Recall the Ackermann function A : Z>0 × Z>0 → Z>0, defined as

A(x, y) =


y + 1 if x = 0

A(x− 1, 1) if x > 0 and y = 0

A(x− 1, A(x, y − 1)) if x, y > 0.

We can now conclude:

Theorem 3.3.5. For all h > 0 we have

C1
h,m = L1

g,m + h− 1.

In particular, if h > 1 then

C1
h,m = A(m− 1, C1

h−1,m) (3.3.10)

and

C1
h,m 6 A(m,h− 1)− 1,

and if h > 2 then

A(m,h− 2) 6 C1
h,m

where A denotes the Ackermann function.

Proof. By the discussion above, all that is left to prove is the “in particular” clause. In [40,

Proposition 1.1] it is shown that if f : Z>0 → Z>0 is a function of the form f(i) = s+ i− 1,

for some integer s > 1, then L1
f,m = A(m, s − 1) − s. Now, by Proposition 3.1.6, C1

h,1 = h;

on the other hand, A(0, C1
h−1,1) = C1

h−1,m + 1 = h, so (3.3.10) holds when m = 1. Assume
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m > 1. Observe that the antichain sequence µ̄ defined above has the form

(h, 0, . . . , 0), (h− 1, 1, 0, . . . , 0), (h− 1, 0, 2, 0, . . . , 0), . . . , (1, 0, . . . , 0, C1
h−1,m − 1),

(0, C1
h−1,m + 1, 0, . . . , 0), (0, C1

h−1,m, 2, 0, . . . , 0), . . . , (0, 0, C1
h,m − 1).

Again by [40, Proposition 1.1], the length of the sequence in the second line equals A(m −

1, C1
h−1,m) − C1

h−1,m − 1. Hence, the degree of the last tuple of the sequence equals A(m −

1, C1
h−1,m)− 1. Consequently, C1

h,m = A(m− 1, C1
h−1,m), as desired.

Now consider the function r : Z>0 → Z>0 given by r(i) = h+ i− 1. Then g(i) 6 r(i) for

all i, and so L1
g,m 6 L1

r,m = A(m,h− 1)− h. Hence,

C1
h,m = L1

g,m + h− 1 6 A(m,h− 1)− 1.

For the second inequality consider the function t(i) = h + i − 2. Then t(i) 6 g(i) for all i,

and so L1
g,m > L1

t,m = A(m,h− 2)− h+ 1. Hence,

C1
h,m = L1

g,m + h− 1 > A(m,h− 2).

3.3.2 The case n > 1.

We now extend the results of the previous subsection to arbitrary n > 1. Let h1 := h

and g1 : Z>0 → Z>0 be defined as g1(1) = h and g1(i) = i + h − 2 for i > 2. For n > 1, we

define hn and gn : Z>0 → Z>0 recursively by

hn := Ln−1
gn−1,m

+ h− (n− 1)



www.manaraa.com

CHAPTER 3. REALIZATIONS OF DIFFERENTIAL KERNELS 50

and

gn(i) =


gn−1(i) if i 6 Ln−1

gn−1,m

hn if i = Ln−1
gn−1,m

+ 1

i+ hn − Ln−1
gn−1,m

− 2 if i > Ln−1
gn−1,m

+ 2

Note that h2 = L1
g1,m

+ h− 1 = C1
h,m (by Theorem 3.3.5).

We will prove that

Cn
h,m = Lngn,m + h− n. (3.3.11)

This will imply that

Cn
h,m = C1

Cn−1
h,m ,m

for n > 2.

In Proposition 3.1.6 we proved that (3.3.11) holds in the case h = 0 or m = 1. We now

assume h > 1 and m > 2. In this case Lngn,m > Ln−1
gn−1,m

+ 2, and so by definition of hn and

gn we get

gn(Lngn,m) + 1 = Lngn,m + hn − Ln−1
gn−1,m

− 1 = Lngn,m + h− n.

Thus, to prove (3.3.11) it suffices to prove

Cn
h,m = gn(Lngn,m) + 1. (3.3.12)

Let µ̄ = (µ1, . . . , µL) be the antichain sequence in Zm>0 × n defined recursively as follows:

µ1 = max
P
{α ∈ Zm>0 × n : deg(α) = gn(1)},

and, as long as it is possible,

µi = max
P
{α ∈ Zm>0 × n : deg(α) = gn(i) and α 6> µ1, . . . , µi−1}.
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In [31, §3.3], it is shown that µ̄ is an antichain sequence of Zm>0×n having length L = Lngn,m

(i.e., µ̄ is of maximal length among antichain sequences of Zm>0×n with degree growth bounded

by gn). It is also observed that

HL
µ̄ (deg(µL)) = HL

µ̄ (g(L)) = 0,

where H i
µ̄ denotes the Hilbert-Samuel function of µ̄, that is, for i, d > 0,

H i
µ̄(d) = |{α ∈ Zm>0 × n : deg(α) = d and α 6> µj for all j 6 i for which µj is defined}|.

The antichain sequence µ̄ can be more explicitly constructed as follows:

Let µ̄(1) be the antichain sequence of maximal length with degree growth bounded by

f1(i) := g1(i) constructed in Section 3.3.1 inside of Zm>0 × {n} (i.e., the n-th copy of Zm>0 in

Zm>0 × n). Let L1 be the length of µ̄(1); in other words L1 = L1
f1,m

. Thus, µ̄(1) is of the form

((µ
(1)
1 , n), . . . , (µ

(1)
L1
, n)).

Similarly, let µ̄(2) be the antichain sequence of maximal length with degree growth bounded

by f2(i) := g2(i + L1) inside of Zm>0 × {n − 1}, and let L2 be the length of µ̄(2) (that is,

L2 = L1
f2,m

). Then,

µ̄(2) = ((µ
(2)
1 , n− 1), . . . , (µ

(2)
L2
, n− 1)).

Continuing in this fashion, we build µ̄(j) for j = 3, . . . n as the antichain sequence of maximal

length with degree growth bounded by

fj(i) = gj(i+ L1 + . . .+ Lj−1)

inside of Zm>0 × {n− j + 1}, and let Lj be the length of µ̄(j) (that is, Lj = L1
fj ,m

). Then the
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sequence µ̄ is the concatenation of µ̄(1), . . . , µ̄(n); in particular, we get the following:

Proposition 3.3.6 ([31, Proposition 3.13]). With the above terminology,

Lngn,m = L1
f1,m

+ . . .+ L1
fn,m.

Note that this implies that

Lngn,m = Ln−1
gn−1,m

+ L1
fn,m. (3.3.13)

From this construction of µ̄, one obtains the following recursive formula

Lngn,m = Ψf1,m(1, (f1(1), 0, . . . , 0)) + . . .+ Ψfn,m(1, (fn(1), 0, . . . , 0)),

where Ψfj ,m is defined as in (3.3.2) with fj in place of g.

We now prove (3.3.12). First, we show that Cn
h,m > g(Lngn,m) + 1.

Lemma 3.3.7. With µ̄ as above, we have Dh,µ̄ = gn(Lngn,m) + 1. In particular, Cn
h,m >

gn(Lngn,m) + 1.

Proof. We proceed by induction on n. The case n = 1 is given in Proposition 3.3.3. Assume

it holds for n − 1. Then Dh,µ̄′ = gn−1(Ln−1
gn−1,m

) + 1 = hn, where µ̄′ is the concatenation

of µ̄(1), . . . , µ̄(n−1). Since µ̄ is the concatenation of µ̄′ and µ̄(n), we have that Dh,µ̄ > Dh,µ̄′ .

Thus, by Remark 3.1.3, Dh,µ̄ = Dhn,µ̄. It follows that Dh,µ̄ = Dhn,µ̄(n) . Since deg
(
µ

(n)
1

)
= hn,

Proposition 3.3.3 (applied with µ̄(n) and hn in place of µ̄ and h, respectively) yields

Dhn,µ̄(n) = deg
(
µ

(n)
Ln

)
+ 1 = gn(Lngn,m) + 1,

as desired.
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We now prove that Cn
h,m 6 gn(Lngn,m) + 1. To do this, suppose there is an antichain

sequence ᾱ = (α1, . . . , αM) of Zm>0 × n such that Dh,ᾱ > gn(Lngn,m) + 1. We must show that

then Dh,ᾱ 6 gn(Lngn,m) + 1.

We now establish the relationship between the Hilbert-Samuel functions of µ̄ and ᾱ. This

is where we use the full potential of Lemma 3.3.1.

Theorem 3.3.8. With µ̄ and ᾱ as above, we have that

H i
ᾱ(d) 6 H i

µ̄(d)

for all i, d > 0. Consequently, Dh,ᾱ 6 gn(Lngn,m) + 1.

Proof. First we make some observations. For any antichain sequence β̄ of Zm>0 × n and each

1 6 j 6 n, we let H i,j

β̄
be the Hilbert-Samuel function of the subsequence of β̄ consisting of

its elements inside of Z>0×{n− j+ 1} (i.e., the (n− j+ 1)-th copy of Zm>0 in Zm>0×n). Then

H i
β̄(d) = H i,1

β̄
(d) + . . .+H i,n

β̄
(d). (3.3.14)

By the construction of µ̄, we have that

H i,j
µ̄ (d) = H i

µ̄(j)(d).

Thus, if Ljgj ,m < i 6 Lj+1
gj+1,m

, for some 0 6 j < n, then for d > deg
(
µ

(j)
Lj

)
we have

0 = H i,0
µ̄ (d) = . . . = H i,j

µ̄ (d) 6 H i,j+1
µ̄ (d) 6 H i,j+2

µ̄ (d) = . . . = H i,n
µ̄ (d), (3.3.15)

where the last terms all equal
(
m−1+d

d

)
, the number of m-tuples of degree d. For the case

j = 0, we are setting L0
g0,m

= 0, µ
(0)
L0

= (0, . . . , 0), and H i,0
µ̄ (d) = 0.

We now go back to the proof of the theorem. We proceed by induction on i. For the
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base case i = 0, we have

H0
ᾱ(d) = n ·

(
m− 1 + d

d

)
= H0

µ̄(d).

Now assume the inequality holds for i > 0. We prove it for i + 1. Note that, since Dh,ᾱ >

gn(Lngn,m) + 1, the sequence ᾱ contains at least two elements of degree at most h. It follows

then that H1
ᾱ(d) 6 H1

µ̄(d) and H2
ᾱ(d) 6 H2

µ̄(d) for all d > 0. Thus, we assume i > 2.

We have that for d < deg(µi+1)

H i+1
ᾱ (d) 6 H i

ᾱ(d) 6 H i
µ̄(d) = H i+1

µ̄ (d).

Now consider the case d = deg(µi+1) (note that d > 1 since h > 0 and i > 2). Let 0 6 j < n

be such that Ljgj ,m < i+ 1 6 Lj+1
gj+1,m

. Note that then d > deg
(
µ

(j)
Lj

)
.

Claim. Either H i+1
ᾱ (d) < H i

ᾱ(d) or H i
ᾱ(d) < H i

µ̄(d).

Proof of Claim. Towards a contradiction suppose

H i+1
ᾱ (d) = H i

ᾱ(d) = H i
µ̄(d). (3.3.16)

By the induction hypothesis, Lemma 3.3.1 (which can be applied by (3.3.15)), and Macaulay’s

theorem (Theorem 3.2.1), we get

n∑
k=1

H i,k
ᾱ (d− 1)〈d−1〉 6

n∑
k=1

H i,k
µ̄ (d− 1)〈d−1〉 = H i

µ̄(d) = H i
ᾱ(d).

This inequality and Macaulay’s theorem imply that

H i,k
ᾱ (d) = H i,k

ᾱ (d− 1)〈d−1〉
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for k = 1, . . . , n. These equalities, together with H i+1
ᾱ (d) = H i

ᾱ(d), imply that deg(αs) 6= d

for all s 6 i+ 1 for which αs is defined. This fact and Corollary 3.2.9 imply that

Dh,ᾱ 6 d = deg(µi+1) < Dh,µ̄.

However, this contradicts our assumption on Dh,ᾱ, and so we have proven the claim.

Hence, either

H i+1
ᾱ (d) < H i

ᾱ(d) or H i
ᾱ(d) < H i

µ̄(d).

Induction yields then that H i+1
ᾱ (d) < H i

µ̄(d), which implies that

H i+1
ᾱ (d) 6 H i

µ̄(d)− 1 = H i+1
µ̄ (d),

as desired.

Now let d > deg(µi+1) (note that then d > deg
(
µ

(j)
Lj

)
). By Macaulay’s theorem,

H i+1,k
ᾱ (d+ 1) 6 H i+1,k

ᾱ (d)〈d〉 (3.3.17)

and

H i+1,k
µ̄ (d+ 1) = H i+1,k

µ̄ (d)〈d〉 (3.3.18)

for k = 1, . . . , n. It then follows, by induction on d > deg(µi+1) and using Lemma 3.3.1, that

H i+1,1
ᾱ (d)〈d〉 + . . .+H i+1,n

ᾱ (d)〈d〉 6 H i+1,1
µ̄ (d)〈d〉 + . . .+H i+1,n

µ̄ (d)〈d〉. (3.3.19)

Thus, putting (3.3.14), (3.3.17), (3.3.18), and (3.3.19) together, we conclude

H i+1
ᾱ (d+ 1) 6 H i+1

µ̄ (d+ 1),
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and the result follows.

For the “consequently” clause, note that setting i = L (recall L = Lngn,m) and d = deg(µL)

yields

HL
ᾱ (deg(µL)) 6 HL

µ̄ (deg(µL)) = 0.

Thus, for every β ∈ Zm>0 × n with deg(β) = deg(µL) we have that β > αj for some αj ∈ ᾱ.

This implies that Dh,ᾱ 6 deg(µL) + 1 = gn(Lngn,m) + 1.

We can now conclude:

Theorem 3.3.9. For all h > 0, we have

Cn
h,m = Lngn,m + h− n.

Consequently,

Cn
h,m = C1

Cn−1
h,m ,m

for n > 2.

Proof. By the discussion above, all that is left to show is the “consequently” clause. Note

that fn(1) = Cn−1
h,m and f(i) = i + Cn−1

h,m − 2 for i > 2. Thus, by Theorem 3.3.5, C1
Cn−1
h,m ,m

=

L1
fn,m

+ Cn−1
h,m − 1. By (3.3.13), we thus have

Cn
h,m = Lngn,m + h− n = L1

fn,m + Ln−1
gn−1,m

+ h− n = L1
fn,m + Cn−1

h,m − 1 = C1
Cn−1
h,m ,m

.

Define the function An : Z>0 × Z>0 → Z>0 by

An(x, y) =


A(x, y − 1)− 1 if n = 1

A(x,An−1(x, y)− 1)− 1 if n > 1

where A denotes the Ackermann function. We then have the following:
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Corollary 3.3.10. For all h > 1, we have

Cn
h,m 6 An(m,h).

Additionally, if h > 2, then

An(m,h− 1) + 1 6 Cn
h,m.

Proof. We prove both inequalities by induction on n. The base case n = 1 is given by

Theorem 3.3.5. Now suppose both inequalities are true for n − 1. Then, by induction and

Theorems 3.3.5 and 3.3.9, we get

Cn
h,m = C1

Cn−1
h,m ,m

6 A(m,Cn−1
h,m − 1)− 1 6 A(m,An−1(m,h)− 1)− 1 = An(m,h)

and, if h > 2,

Cn
h,m = C1

Cn−1
h,m ,m

> A(m,Cn−1
h,m − 2) > A(m,An−1(m,h− 1)− 1) = An(m,h− 1) + 1.

3.4 Specific values

In this section we provide some specific values for Cn
h,m and compare this to what was

previously known in terms of upper bounds for T nh,m.

1. For m = 1, by Proposition 3.1.6(2), Cn
h,1 = h for all n and h. Since every differential

kernel with a single derivation has a regular realization (see [30, Proposition 3]), this

is the exact value of T nh,1.

2. For m = 2, the previous bound yields

T nh,2 6 2bn+1h,
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where bn is given recursively by b0 = 0 and bi+1 = 2bi+1h + bi + 1; see [31, §3]. In

particular,

T 1
h,2 6 22h+2h and T 2

h,2 6 222h+2h+2h+3h.

On the other hand, we claim that our new bound yields

T nh,2 6 2nh,

which is a new and practical result. To see this, first observe that for the case when

n = 1, by (3.3.10) of Theorem 3.3.5, C1
h,2 = A(1, C1

h−1,2) for all h, so by induction on

h, assuming C1
h−1,2 = 2(h− 1), we have

C1
h,2 = A(1, C1

h−1,m) = A(1, 2h− 2) = 2h.

Note that in Proposition 3.1.6(3) we also proved that C1
h,2 = 2h directly using the

definition of Cn
h,m. For the case of m > 2, we use Theorem 3.3.9 and induction on n;

the base case is n = 1, and so

Cn
h,2 = C1

Cn−1
h,2 ,2

= C1
2n−1h,2 = 2(2n−1h) = 2nh.

3. For m = 3, up until now it was only known that

T 1
1,3 6 271 and T 1

2,3 6 222
520+520+2520+521;

see [31, Example 3.15]. We claim that our bound yields

T 1
h,3 6 3(2h − 1).



www.manaraa.com

CHAPTER 3. REALIZATIONS OF DIFFERENTIAL KERNELS 59

We show this by induction on h. The case h = 0 is given in Proposition 3.1.6(1).

Assume C1
h−1,3 = 3(2h−1 − 1). Then, by (3.3.10) of Theorem 3.3.5,

C1
h,3 = A(2, C1

h−1,3) = A(2, 3(2h−1 − 1)) = 2(3(2h−1 − 1)) + 3 = 3(2h − 1).

4. So far no feasible upper bound was known for m > 4. Using (3.3.10) of Theorem 3.3.5,

our bound yields

T 1
1,4 6 C1

1,4 = 5, T 1
1,5 6 C1

1,5 = 13, and T 1
1,6 6 C1

1,6 = 65533.

5. More generally (for arbitrary m), in [31], it was shown that

T nh,m <


2A(m+ 3, 4h− 1) when n = 1

2
n
A(m+ 5, 4nh− 1) when n > 1.

(3.4.1)

Recall A : Z>0 × Z>0 → Z>0 denotes the Ackermann function:

A(x, y) =


y + 1 if x = 0

A(x− 1, 1) if x > 0 and y = 0

A(x− 1, A(x, y − 1)) if x, y > 0.

The Ackermann function is known to have extremely large growth, especially in the

first input. For example, A(1, y) = y + 2, A(2, y) = 2y + 3, A(3, y) = 2y+3 − 3, and

A(4, y) = 22··
·2︸︷︷︸

y+3

−3.

Thus, the upper bounds (3.4.1) are not computationally feasible, since the first input
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is m+ 3 when n = 1, and m+ 5 when n > 1. On the other hand, by Corollary 3.3.10,

our bound implies that

T nh,m 6 An(m,h),

where An : Z>0 × Z>0 → Z>0 is an iterated Ackermann function given by

An(x, y) =


A(x, y − 1)− 1 if n = 1

A(x,An−1(x, y)− 1)− 1 if n > 1.

This new upper bound is easier to work with, especially for small inputs. For example,

An(3, h) is a tower of exponentials in h, where the height of the tower is equal to n.
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Chapter 4

Effective Differential Nullstellensatz

This chapter is focused on providing a new upper bound for the effective differential Null-

stellensatz. It begins by showing several auxiliary results in Section 4.1; the key lemma in

this section, Lemma 4.1.3, uses the value T nh,m which was bounded in Chapter 3. The main

result, Theorem 4.2.1, is contained in Section 4.2. This is continued with an analysis of

our estimate for particular numbers of derivations in Section 4.3. In Section 4.4, a series of

examples showing a new lower bound is given.

4.1 Preparation

As above, let (K,∆) be a differential field of characteristic zero with m commuting deriva-

tions. In this chapter we study the effective differential Nullstellensatz. The weak form of

the differential Nullstellensatz states that, for all F ⊆ K{y1, . . . , yn}, 1 /∈ [F ] if and only

if, for all differentially closed fields L ⊇ K, there exists (a1, . . . , an) ∈ Ln such that, for all

f ∈ F , f(a1, . . . , an) = 0. The strong form of the differential Nullstellensatz states that for

all F ⊆ K{y1, . . . , yn} and g ∈ K{y1, . . . , yn}, g ∈ {F} if and only if, for all differentially

closed fields L ⊇ K and all (a1, . . . , an) ∈ Ln such that, for all f ∈ F , f(a1, . . . , an) = 0, we

61
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have g(a1, . . . , an) = 0.

In this chapter we will set R := K{y1, . . . , yn} to be the ring of differential polynomials

on n differential indeterminates y1, . . . , yn, and for all h > 0, we set

Rh := K
[
θyi : 1 6 i 6 n, θ ∈ Θ, ord(θ) 6 h

]
,

that is, Rh is the set of all differential polynomials of order at most h. In this chapter, we

work with an arbitrary orderly ranking < on R (note that < is different than the partial

order defined on Zm>0 × n from before). Let l > 0 and J ⊂ Rl be an ideal. For each k ∈ Z>0,

let J (k) be the ideal of the ring Rl+k generated by the derivatives of the elements of J up to

order k (cf. [33]), that is,

J (k) =
(
θg : g ∈ J, ord(θ) 6 k

)
.

For D ∈ Θ, let J (D) be the ideal of Rl+ord(D) generated by the derivatives of the elements of

J not exceeding D in the given orderly ranking <, that is,

J (D) =
(
θg : g ∈ J, θ 6 D

)
.

For every ideal J of the ring Rl, we let

J ′ =
√

(θJ : ord θ 6 1) ∩Rl.

We also let

αl =

(
l +m

m

)
.

Note that

dimK(Rl) = nαl.
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Lemma 4.1.1. Let J ⊂ Rl be an ideal, p > 0, and
(
J ′
)p ⊆ J (1). Then, for all k > 0,

√
J ′(k) ⊆

√
J (kp+1).

Proof. Fix an orderly ranking on the ring of ∆-polynomials K{y}. Let D ∈ Θ, p ∈ Z>0.

Then there exist βl ∈ K{y} and an element c ∈ Q such that

Dp
(
yp
)

= c(D(y))p +
∑

θ(l)y<Dy

βlθ(l)y. (4.1.1)

Indeed, let D = ∂i11 . . . ∂imm ∈ Θ of order r. By the Leibniz rule, for every weight- and degree-

homogeneous differential polynomial z, the differential polynomial ∂z is homogeneous of

degree equal to deg z and of weight with respect to ∂ equal to that of z plus one. Hence,

Dp
(
yp
)

=
∑

∑p
k=1 l

k
1=pi1,...,

∑p
k=1 l

k
m=pim

c?∂
l11
1 . . . ∂

l1m
m y · . . . · ∂

lp1
1 . . . ∂

lpm
m y, (4.1.2)

where c? are some elements of K. Consider a monomial in the right-hand side of (4.1.2).

Suppose that it is of order greater than r in every differential indeterminate that appears in

it. Then, for each k, 1 6 k 6 p, we have

lk1 + . . .+ lkm > r.

Adding p inequalities, we obtain

pr = p(i1 + . . .+ im) =

p∑
k=1

m∑
t=1

lkt > pr,

which is a contradiction. Therefore, for each monomial in the right-hand side of (4.1.2), one
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of the factors has order 6 r, and we have:

Dp
(
yp
)

=
∑

∑p
k=1

lk1=pi1,...,
∑p
k=1

lkm=pim∑m
k=1

l1
k
>r,...,

∑m
k=1

l
p
k
>r

c?∂
l11
1 . . . ∂

l1m
m y · . . . · ∂

lp1
1 . . . ∂l

p
m
m y +

∑
l<r

βlθ(l)y, (4.1.3)

If, in a monomial from the first sum in (4.1.3), at least one of the factors had order greater

than r, then, as in the above, by adding p inequalities, we would arrive at a contradiction.

Thus, we obtain:

Dp
(
yp
)

=
∑

∑p
k=1

lk1=pi1,...,
∑p
k=1

lkm=pim∑m
k=1

l1
k
=r,...,

∑m
k=1

l
p
k
=r

c?∂
l11
1 . . . ∂

l1m
m y · . . . · ∂

lp1
1 . . . ∂l

p
m
m y +

∑
l<r

βlθ(l)y, (4.1.4)

Let the orderly ranking on ΘY be such that ∂1 > . . . > ∂m and, in the first sum in (4.1.4),

for one of the factors, we have lk1 > i1 for all k, 1 6 k 6 p. Adding these p inequalities, we

obtain

pi1 =

p∑
k=1

lk1 > pi1,

which gives a contradiction. Thus,

Dp
(
yp
)

=
∑

∑p
k=1

lk1=pi1,...,
∑p
k=1

lkm=pim∑m
k=1

l1
k
=r,...,

∑m
k=1

l
p
k
=r

l11=i1,...,l
p
1=i1

c?∂
l11
1 . . . ∂

l1m
m y · . . . · ∂

lp1
1 . . . ∂l

p
m
m y +

∑
θ(l)y<Dy

βlθ(l)y,

As before, note that, for each monomial from the first sum, one cannot have lk2 > i2 for all

k, 1 6 k 6 p. Thus in this sum, we are left with just the monomials of order 6 r of the form

∂i11 ∂
i2
2 ∂

l13
3 . . . ∂

l1m
m y · ∂

i1
1 ∂

i2
2 ∂

lp3
3 . . . ∂

lpm
m y,

moving the rest of the monomials to the other sum. We now see that, distributing all
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monomials between these two sums accordingly, we obtain that the first sum contains only

one summand and, therefore, obtain (4.1.1).

We will prove the statement of the lemma now. By induction on k, we will show that,

for all D ∈ Θ of order k,
√
J ′(D) ⊆

√
J (kp+1).

By the definition of J ′, there exists p > 1 such that, for every j′ ∈ J ′,

j′p =
∑
i

θiji, ji ∈ J, ord(θi) 6 1. (4.1.5)

The base case is k = 0, so D ∈ Θ is of order 0. By the definition of J ′,

√
J ′ = J ′ ⊆

√
J (1),

and the statement holds. Now let k := ord(D) > 0 and suppose that, for all D′ < D, we

have
√
J ′(D′) ⊆

√
J (kp+1).

By (4.1.1) for y = j′, (4.1.5) implies

c
(
D
(
j′
))p

+
∑
D′<D

βD′D
′j′ = Dp

(∑
i

θiji

)
. (4.1.6)

Since

Dp

(∑
i

θiji

)
∈ J (kp+1)

and, by the inductive hypothesis, for all D′ < D, D′j′ ∈
√
J (kp+1) in (4.1.6), we have

√
J ′(D) ⊆

√
J (kp+1).
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Lemma 4.1.2. Let s > 0,

I0 = (F0) ⊆ I1 = (F1) ⊆ ... ⊆ Is = (Fs) ⊆ Rl

be ideals of Rl, pj > 0, 0 6 j 6 s, and, for all i, 1 6 i 6 s,

Ii =
(
Ii−1

)′
and Ipii ⊆ I

(1)
i−1.

Then, for all q ∈ Z>0, there exists k such that

I(q)
s ⊆

√
(F0)(k) and k 6 1 + p1 + p1 · p2 + . . .+ q · p1 · . . . · ps.

Proof. Let g ∈ I(q)
s . Then g ∈ I ′(q)s−1. Set J = Is−1. Then

J (1) =
(
Fs−1, ∂Fs−1 : ∂ ∈ ∆

)
, J ′ =

√
J (1) ∩Rl.

Applying Lemma 4.1.1 with k = q, we obtain

g ∈
√
I

(qps+1)
s−1 .

Again, by Lemma 4.1.1 with k = qps + 1 and J = Is−1, we have

g ∈
√
I

(ps−1(qps+1)+1)
s−2 .

Arguing similarly, we obtain

g ∈
√
I

(1+...(1+(1+psq)ps−1)...p1)
0 ⊆

√
(F0)(1+...(1+(1+qps)ps−1)...p1).
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Recall from Definition 2.2.13 that T nh,m is the smallest integer > h such that for any

differential field (K,∆) of characteristic zero with m commuting derivations and any dif-

ferential kernel L over K of length h, if L has a prolongation of length T nh,m, then L has a

regular realization. Note that this means that T nh,m is the smallest integer > h such that if

K
(
aθi : 1 6 i 6 n, ord(θ) 6 T nh,m

)
is a differential kernel over K, then there is a differential

field extension (M, ∂′1, . . . , ∂
′
m) of (K,∆) containing K

(
aθi : 1 6 i 6 n, ord(θ) 6 h

)
such that

for all K, 1 6 k 6 m,

∂′ka
θ
i = a∂k·θi

whenever ord(θ) 6 h−1. In Chapter 3 we proved an upper bound for T nh,m and an algorithm

to compute that upper bound; see Theorem 3.1.4 and Theorem 3.3.9.

For all F ⊆ Rh, we let

I =
√

(F ), T = T nh,m (for m > 1), T = h+1 (for m = 1), I0 =
√
I(T )∩RT−1 (4.1.7)

and

Ik =
√(

g, ∂g : g ∈ Ik−1, ∂ ∈ ∆
)
∩RT−1 =

√
I

(1)
k−1 ∩RT−1. (4.1.8)

Lemma 4.1.3 (cf. [12, Proposition 4.1]). If 1 ∈ [F ], then, for all k > 1 such that Ik 6= RT−1,

dim(Ik−1) > dim(Ik).

Proof. Suppose that

dim(Ik) = dim(Ik−1) (4.1.9)

for some k > 1. Fix such k. Since Ik−1 ⊆ Ik, by (4.1.9), there exists a minimal prime

component of Ik that is a minimal prime component of Ik−1. Pick such a component and
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denote it by Q. Let P be a prime component of
√
I

(1)
k−1 ⊆ RT such that

Q = P ∩RT−1, (4.1.10)

which exists by [4, Proposition 16, Section 2, Chapter II]. Let

RT

/
P = K

[
aθi : 1 6 i 6 n, ord(θ) 6 T

]
.

Then, by (4.1.10),

RT−1

/
Q = K[b], b :=

(
aθi : 1 6 i 6 n, ord(θ) < T

)
.

We will show that the field

L = K
(
aθi : 1 6 i 6 n, ord(θ) 6 T

)
is a differential kernel over K. For this, it is sufficient to show that, if

f ∈ K
[
xθi : 1 6 i 6 n, ord(θ) 6 T − 1

]
and f(b) = 0,

then ∑
16i6n

ord(θ)6T−1

∂f

∂xθi
(b)a∂k·θi + f∂k(b) = 0 (4.1.11)

(here f∂k is the polynomial obtained from f by applying ∂k to its coefficients). Note that

Q(1) ⊆ P . Indeed, let J be the intersection of all minimal prime components of Ik−1 not

equal to Q, h ∈ Q, ∂ ∈ ∆, and g ∈ J \ Q be such that hg ∈ Ik−1. By [26, Lemma 1.3,

Chapter I],

g · ∂h ∈
√
I

(1)
k−1 ⊆ P.
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Since g /∈ Q and g ∈ RT−1, g /∈ P . Hence, ∂h ∈ P .

Finally, since f(b) = 0, f ∈ Q. Hence, ∂f ∈ Q(1) ⊂ P , which implies (4.1.11). By

the choice of T and Theorem 2.2.12, if L is a differential kernel over K, Quot(R/{Q}) is a

non-trivial extension of the differential field (K,∆), which contradicts 1 ∈ [F ] ⊆
[
Ik
]
.

4.2 Upper bound

We can now state the main result of this chapter. This is the effective weak differential

Nullstellensatz.

Theorem 4.2.1. Let h,D > 0, F ⊂ Rh, deg(F ) 6 D. Then 1 ∈ [F ] if and only if there

exists k > 0 such that

k 6 (nαT−1D)2
O(n3α3T )

and 1 ∈ (F )(k),

where αT =
(
T+m
m

)
and T is any function of m, n, and h for which the statement of

Lemma 4.1.3 holds, for instance, T = T nh,m, defined as above.

Remark 4.2.2. If the statement of Lemma 4.1.3 is improved by finding a function that grows

slower than T nh,m such that the conclusion of the lemma still holds, one will not have to

reprove Theorem 4.2.1 to have the correspondingly improved bound.

Proof. If 1 ∈ (F )(k), then 1 ∈ [F ] by definition. We will now show the reverse implication.

Let s = dim(Z(F )) and also

a := nαT−1, b := nαT , c := O
(
n2α2

T−1

)
, (4.2.1)

where the assignment of c in the above is simply a way of shortening formulas below and

is to be treated as just a replacement of the O-expression by the symbol c. Then, by [23,
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Proposition 2.3],

deg(Z(F )) = deg(Z(I)) 6 Dnαh .

Hence, by [9, Proposition 4], the ideal I (as well as the ideal I(T ), see (4.1.8)) can be

generated by polynomials of degree at most

(nαhD
nαh)2O(snαh)

6 (nαh)
2
O(n2α2h)

Dnαh·2
O(n2α2h)

= (nαhD)2
O(n2α2h)

=: dF .

Then

deg(Z(I0)) 6 dnαTF = (nαhD)b2
O(n2α2h)

=: D0

and the ideal I0 can be generated by polynomials of degrees at most

(aD0)2c = (a)2c (nαhD)b2
O(n2α2h)+c

=: d0.

Moreover, by [25, Theorem 1.3],

√
I(T )

p0 ⊆ I(T ), p0 := dbF .

Hence,

Ip00 ⊆ I(T ) ∩RT−1.

Continuing this way, we obtain that

deg(Z(Ii+1)) 6 dnαTi =: Di+1
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and the ideal Ii+1 can be generated by polynomials of degrees at most

di+1 := a2c(di)
b2c = a2c

(
a2cdb2

c

i−1

)b2c
= a2c+b22cdb

222c

i−1

= a2c+b22c
(
a2cdb2

c

i−2

)b222c

= a2c+b22c+b223cdb
323c

i−2 .

Therefore,

di+1 = a
2c

q∑
j=0

(b2c)j

d
(b2c)q+1

i−q = a
2c

i∑
j=0

(b2c)j

d
(b2c)i+1

0

= a2c
(b2c)i+1−1

b2c−1 d
(b2c)i+1

0 6
(
a2cd0

)(b2c)i+1

and

Di+1 6
(
a2cd0

)b(b2c)i
.

Again, by [25, Theorem 1.3],

√
I

(1)
i

pi+1

⊆ I
(1)
i , pi+1 :=

(
a2cd0

)b(b2c)i
> dbi , i > 0.

Hence,

I
pi+1

i+1 ⊆ I
(1)
i ∩RT−1.

By Lemma 4.1.3, since dim(RT−1) = a, 1 ∈ Ia. By Lemma 4.1.2 applied to (4.1.8),

1 ∈ I(1+p1+p1·p2+...+p1·...·pa)
0 .

Again by Lemma 4.1.2, for all q > 0,

I
(q)
0 ⊆

√
I(T+1+qp0).
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Hence,

1 ∈ I(T+1+p0(1+p1+p1·p2+...+p1·...·pa)).

By Lemma 4.1.1 applied to (4.1.7), we obtain

1 ∈(F )(1+p0(T+1+p0(1+p1+p1·p2+...+p1·...·pa)))

= (F )(1+p0(T+1+...(1+(1+pa)pa−1)...p0)) = (F )(p0(T+p0·...·pa)), (4.2.2)

with the latter equality following from the definition of c via the O-symbol. Note that

p2
0p1 · . . . · pa = d2b

F

(
a2cd0

)b a−1∑
j=0

(b2c)j

= d2b
F

(
a2cd0

)b( (b2c)a−1

b2c−1
−1

)

6 d2b
F

(
a2cd0

)b(b2c)a
= d2b

F

(
a2dbF

)(b2c)a+1

6 (adF )b((b2c)a+1+2) = (adF )2cb = a2cb (nαhD)2
O(n2α2h)+cb

= a2cb (nαhD)2cb = (aD)2cb ,

(the equalities hold by the O-definition of c and because αT−1 > 1 if h > 1 and k = a = 0 if

h = 0) and the result follows by substituting (4.2.1) in the above and using (4.2.2).

Using the Rabinowitz trick, we obtain the effective strong differential Nullstellensatz.

Corollary 4.2.3. (cf. [9, Corollary 21]) Let h,D > 0, F ⊂ Rh, f ∈ Rh, and

max{deg(f), deg(F )} 6 D.

Then f ∈ {F} if and only if there exists k > 0 such that

k 6 (nαT ′−1D)2
O(n3α3T ′)

and f ∈
√

(F )(k),

where T ′ := T n+1
h,m .
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Proof. If f ∈
√

(F )(k), then f ∈ {F} by definition. Let f ∈ {F}. Then 1 ∈ [1 − tf, F ] ⊆

K{y1 . . . , yn, t}. By Theorem 4.2.1,

1 ∈
(

(1− tf)(k) , F (k)
)
,

for which we used the properties of O to go down from D + 1 (which appears because

deg(tf) = deg(f) + 1) to D and from n+ 1 to n outside of T ′. As usual, by substituting 1/f

into t and clearing out the denominators, we obtain the result.

Remark 4.2.4. Note that, for m > 2, T 6= O(T ′) (see Section 4.3), and so we do not replace

T ′ by T in the corollary. However, for m = 1, we simply have T ′ = T = h+ 1.

4.3 Concrete values of the number of derivations

Recall that, if m = 1, then T = h+ 1. Then the bound from Theorem 4.2.1 is

(n(h+ 1)D)2
O(n3(h+2)3)

and is better than the bound from [9, Corollary 19], because our result holds for non-constant

coefficients.

If m = 2, by Theorem 3.3.9, T = T (n, h) 6 2nh. Therefore, in this case, the bound from

Theorem 4.2.1 is (
n2n−1h(2nh+ 1)D

)2
O(n326nh6)

.

By Section 3.3.1, when there is only one differential indeterminate (n = 1), then T =

T (m,h) 6 A(m,h− 1)− 1. Hence, for a small number of derivations, the value of T is quite

manageable. For example, by Section 3.4(3), if m = 3 and n = 1, then T = T (h) 6 3(2h−1).

As a result, in this case, the bound from Theorem 4.2.1 is triple-exponential in h.
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For comparison, note that the bound from [15, Theorem 1], A(m + 8,max(n, h, d)), has

a substantially higher growth rate, as, for example, A(3, x) is exponential in x and A(4, x)

is a tower of exponentials of length x + 3, and the minimal possible value here, A(9, 1), is

out of reach for any existing computer even to output.

4.4 Lower bound

The examples in [15] show that the lower bound for the effective differential Nullstellensatz

is exponential in the number of variables and the number of derivations and polynomial in

the degree of the system. We expand on these results, first by observing how the order of

the system affects the lower bound.

Example 4.4.1. Consider the system

F =
{
yd1 , y1 − yd2 , . . . , yn−1 − ydn, 1− y(h)

n

}
⊆ K{y1, . . . , yn} =: R

with one derivation. A particular and essential case of this, h = 1, was considered in an

unpublished manuscript by York Kitajima, and the argument in the present example is

based on Kitajima’s argument and extends it, with extra subtleties. Recall that for s > 2

and m,m1, . . . ,ms ∈ Z>0 with m1 + . . .+ms = m, the multinomial coefficient is

(
m

m1, . . . ,ms

)
=

m!

m1! · . . . ·ms!
.

For l > 1, denote by Ml the multinomial coefficient

Ml =

(
dlh

dl−1h, . . . , dl−1h

)
,
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where this multinomial coefficient contains d terms. We claim that (F )(j) ⊆ Ij where

I0 =
(
y1, y2, . . . , yn−1, yn, 1− y(h)

n

)
Ij =

(
Ij−1, y

(j)
1 , y

(j)
2 , . . . , y

(j)
n−1, y

(j)
n , y(h+j)

n

)
1 6 j 6 h− 1

Ij =

(
Ij−1, y

(j)
1 , . . . , y

(j)
n−i −

i∏
l=1

Mdi−l

l , y
(j)
n−i+1, . . . , y

(j)
n−1, y

(h+j)
n

)
j = dih, 1 6 i 6 n− 1

Ij =
(
Ij−1, y

(j)
1 , . . . , y

(j)
n−1, y

(h+j)
n

)
otherwise, j 6 dnh− 1.

Indeed, we can show this by induction on j. The base case j = 0 is clear. Now assume

(F )(k) ⊆ Ik for all k < j. By induction, we only need to show the inclusion of unmixed

monomials, i.e. powers of a single derivative of a yi. The generalized Leibniz rule says that

for all s > 1, m > 0, and f1, . . . , fs ∈ R,

(
s∏
r=1

fr

)(m)

=
∑

m1+...+ms=m

(
m

m1, . . . ,ms

) s∏
r=1

f (mr)
r .

In our system F , we have s = d. Unmixed monomials thus occur when m1 = . . . = md =

m/d. When j 6= dih, y
(j/d)
i ∈ Ij for all i, 1 6 i 6 n, so there is nothing to prove. The case

we must consider is when j = dih, in which case each mα in the multinomial coefficient is

di−1h and y
(dih)
n−i /∈ Idih.

It remains to show that
(
yn−i − ydn−i+1

)(dih) ∈ Idih, since y
(di−1h)
n−i+1 /∈ Idi−1h by construction.

Observe that (
yn−i − ydn−i+1

)(dih)
= y

(dih)
n−i −Mi

(
y

(di−1h)
n−i+1

)d
+ g,

where g ∈ K{y} contains no unmixed monomials, and so is in Idih. Thus, it suffices to show

y
(dih)
n−i −Mi

(
y

(di−1h)
n−i+1

)d
∈ Idih.
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By construction,

y
(di−1h)
n−i+1 −

i−1∏
l=1

Mdi−l−1

l ∈ Idi−1h ⊆ Idih.

We can thus write

y
(dih)
n−i −Mi

(
y

(di−1h)
n−i+1

)d
=(

y
(dih)
n−i −

i∏
l=1

Mdi−l

l

)
−Mi

d−1∑
α=0

[(
i−1∏
l=1

Mdi−l−1

l

)α (
y

(di−1h)
n−i+1

)d−1−α
](

y
(di−1h)
n−i+1 −

i−1∏
l=1

Mdi−l−1

l

)

in terms of elements of Idih, completing the induction step and proving that F (j) ⊆ Ij for all

j, 1 6 j 6 dnh− 1.

Since 1 /∈ Ij for all j, 0 6 j 6 dnh− 1, then 1 /∈ (F )(dnh−1). Observe that

(
yd

n

n

)(dnh)
=
((
yd

n

n

)(h)
)((dn−1)h)

=


 ∑
n1,1+...+n1,dn=h

(
h

n1,1, . . . , n1,dn

) dn∏
i=1

y(n1,i)
n

(h)


((dn−2)h)

=


 ∑
n1,1+...+n1,dn=h

∑
n2,1+...+n2,dn=h

(
h

n1,1, . . . , n1,dn

)(
h

n2,1, . . . , n2,dn

) dn∏
i=1

y(n1,i+n2,i)
n

(h)


((dn−3)h)

= . . . =
∑

n1,1+...+n1,dn=h

. . .
∑

ndn,1+...+ndn,dn=h

(
dn∏
j=1

(
h

nj,1, . . . , nj,dn

) dn∏
i=1

y
(n1,i+...+ndn,i)
n

)
.

Since y
(h)
n ≡ 1 modulo the system F , then y

(l)
n ≡ 0 for all l > h, so the only non-zero terms in

this sum will be powers of y
(h)
n . We thus have that, modulo F ,

(
yd

n

n

)(dnh) ≡ 1, so 1 ∈ (F )(dnh)

and 1 /∈ (F )(dnh−1).
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Example 4.4.2. Consider the following collections of differential polynomials in K{y1, . . . , yn}

with derivatives ∆ = {∂1, . . . , ∂m}, with d, h > 1:

G1 =
{

(∂1y1)d, ∂1y1 − (∂2y1)d, . . . , ∂m−1y1 − (∂my1)d
}

Gi =
{
∂myi−1 − (∂1yi)

d, ∂1yi − (∂2yi)
d, . . . , ∂m−1yi − (∂myi)

d
}

2 6 i 6 n− 1

Gn =
{
∂myn−1 − (∂1yn)d, ∂1yn − (∂2yn)d, . . . , ∂m−1yn − (∂myn)d, 1− ∂h+1

m yn
}
.

Similar to what is done in [15], if we replace F in the previous example by G =
⋃n
i=1Gi,

then the elements of G will need to be differentiated a minimum of dmnh times in order to

reduce the system to 1, so 1 ∈ (G)(dmnh) and 1 /∈ (G)(dmnh−1).

In these examples, the lower bound for having f ∈ (G)(k) is exponential in the number

of derivations and number of variables and linear in the order of the system. The systems

of partial differential equations presented in these examples are non-linear. The existence

of a lower bound for linear systems that is double-exponential in the number of derivations

m is shown in [38]. It is currently unknown how to combine this result with the non-linear

examples presented here to produce a lower bound that more closely resembles the current

upper bound.

We now present an alternative approach, using the lower bound on the effective poly-

nomial Nullstellensatz, to construct an example of a linear system G ⊆ K{y1, . . . , yn} with

f ∈ (G)(k) but f /∈ (G)(k−1), where K is exponential in the number of derivations and the

number of variables and polynomial in the order of the system. We believe that this approach

can be extended to the case of non-linear systems to produce better lower bounds.

We use a system of polynomials to construct a system of differential polynomials. We

begin with polynomials in K[X1, . . . , Xm] and construct differential polynomials in K{y}

with derivations ∆ = {∂1, . . . , ∂m}, where K is constant with respect to each ∂i. Given

α = (α1, . . . , αm) ∈ Zm>0, denote Xα = Xα1
1 · . . . ·Xαm

m and ∂α = ∂α1
1 . . . ∂αmm .
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Suppose we have f1, . . . , fr ∈ K[X1, . . . , Xm]. For each i, 1 6 i 6 r, there exist

αi,1, . . . , αi,Ni ∈ Zm>0 and ci,1, . . . , ci,Ni ∈ K such that

fi =

Ni∑
j=1

ci,jX
αi,j .

We then define f̃i ∈ K{y} to be

f̃i =

Ni∑
j=1

ci,j∂
αi,jy.

Similarly, given f =
N∑
j=1

sjX
γj ∈ K[X1, . . . , Xm], we can define f̃ =

N∑
j=1

sj∂
γjy ∈ K{y}.

Consider the system G = {f̃1, . . . , f̃r}.

Theorem 4.4.3. Let f, f1, . . . , fr ∈ K[X1, . . . , Xm], f̃ , f̃1, . . . , f̃r ∈ K{y}, and G ⊆ K{y} be

defined as above. Suppose f ∈ (f1, . . . , fr) and let k be the lower bound for the degree of the

coefficients of the fi in any possible representation of f . Then f̃ ∈ (G)(k) but f̃ /∈ (G)(k−1).

Proof. Suppose f ∈ (f1, . . . , fr), so there exist g1, . . . , gr ∈ K[X1, . . . , Xm] such that f =

g1f1 + . . . + grfr. As with each fi, there exist βi,j ∈ Zm>0 and di,j ∈ K, j = 1, . . . ,Mi, such

that we can write each gi as

gi =

Mi∑
j=1

di,jX
βi,j .

It is then easy to see that

M1∑
j=1

d1,j∂
β1,j
(
f̃1

)
+ . . .+

Mr∑
j=1

dr,j∂
βr,j
(
f̃r

)
=

N∑
j=1

sj∂
γjy = f̃ . (4.4.1)

Since G = {f̃1, . . . , f̃r}, we thus have that f̃ ∈ [G], and since the maximum degree of each

gi is k, the maximum order of each ∂βi,j is also k, so f̃ ∈ (G)(k).

It remains to show that f̃ /∈ (G)(k−1). Suppose for a contradiction we have f̃ ∈ (G)(l) for
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some l < k, so we can write

f̃ =

K1∑
j=1

α1,j(y)∂σ1,j
(
f̃1

)
+ . . .+

Kr∑
j=1

αr,j(y)∂σr,j
(
f̃r

)
(4.4.2)

where the αi,j ∈ K{y} and ord ∂σi,j 6 l < k.

To complete the proof, we need the following fact about systems of homogeneous degree 1

polynomials. Suppose p, p1, . . . , ps ∈ K[X1, . . . , Xn] are homogeneous degree 1 polynomials.

If there exist q1, . . . , qs ∈ K[X1, . . . , Xn] such that p = q1p1 + . . .+ qsps, then we can in fact

assume that all of the qi are constant. Indeed, write p = a1X1 + . . .+anXn. Assume without

loss of generality that an 6= 0. Since p = q1p1 + . . .+ qsps, then

Xn = q0 +
q1

an
p1 + . . .+

qs
an
ps, q0 := −a1

an
X1 − . . .−

an−1

an
Xn−1.

Thus, it suffices to prove the result when p = Xn.

For this, order the variables so that X1 > . . . > Xn. Applying Gauss-Jordan elimination

to the system {pi = 0}, we obtain a new system {p′i = 0} that is in reduced row echelon

form. Moreover, every p′i is a linear combination of p1, . . . , pr (with coefficients in K) and

vice versa. There are two cases to consider. If Xn is a leading variable in {p′i = 0}, then

because of the ordering on the Xi, we must have in fact that Xn is one of the p′i, so the proof

is complete. Therefore, suppose Xn is not a leading variable of {p′i = 0}. By assumption,

Xn ∈ (p1, . . . , ps) = (p′1, . . . , p
′
s). This implies that for every solution (α1, . . . , αn) of the

system {pi = 0} (or equivalently {p′i = 0}), αn = 0. Thus, Xn cannot be a free variable of

{p′i = 0}, since there is a solution of the system {p′i = 0} for every possible value of any free

variable (provided that a solution exists, which in this case is true, given by (0, . . . , 0)).

Now, since the ∂γjy and ∂σi,j(f̃i) in (4.4.2) are all homogeneous of degree 1, by the above
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discussion, we can assume that the αi,j are all constants bi,j ∈ K, so we obtain

f̃ =

K1∑
j=1

b1,j∂
σ1,j
(
f̃1

)
+ . . .+

Kr∑
j=1

br,j∂
σr,j
(
f̃r

)
. (4.4.3)

Let

hi =

Ki∑
j=1

bi,jX
σi,j .

Based on our construction of (4.4.1) we can go backwards and deduce, using (4.4.3), that

f = h1f1 + . . . + hrfr. Since we know that ord(∂σi,j) 6 l, this means that deg(hi) 6 l,

1 6 i 6 r, contradicting the fact that the maximum degree must be at least k > l.

Remark 4.4.4. If f = 1 in Theorem 4.4.3, then f̃ = y. Thus, by considering the system

G1 = {G, 1− ty} ⊆ K{t, y}, we have 1 ∈ (G1)(k) and 1 /∈ (G1)(k−1).

Example 4.4.5. For m > 2, h > 1, consider the following system of polynomial equations in

K[X1, . . . , Xm]; cf. [5, page 578]:

f1 = Xh
1 , f2 = X1 −Xh

2 , . . . , fm−1 = Xm−2 −Xh
m−1, fm = 1−Xm−1X

h−1
m .

It is shown that 1 ∈ (f1, . . . , fm) and if 1 = g1f1 + . . .+ gmfm, then

deg(g1) > hm − hm−1 = hm−1(h− 1).

Thus, if k is the maximum degree of the gi (that is smallest possible over the collection of

all gi so that 1 =
∑
gifi), we must have that k > hm−1(h− 1).

Let us use this polynomial system to create a system of differential polynomial in K{y}

with derivations ∆ = {∂1, . . . , ∂m}. Let G be the system in K{y} given by

f̃1 = ∂h1 y, f̃2 = ∂1y − ∂h2 y, . . . , f̃m−1 = ∂m−2y − ∂hm−1y, f̃m = y − ∂m−1∂
h−1
m y. (4.4.4)
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By the above discussion, we have y ∈ (G)(k) where k > hm−1(h−1) and y /∈ (G)(h
m−1(h−1)−1).

We have thus constructed a linear system G in which the number of derivations of the

elements of G needed is exponential in the number of derivatives and polynomial in the

order of the system.

We can construct an explicit linear combination of the f̃is and their derivatives equaling

y that requires exactly hm−1(h − 1) derivations of f̃1. Explicit gis are constructed in [5]

such that 1 = g1f1 + . . . + gmfm and deg(g1) = hm−1(h − 1) by observing that, setting

D = hm−1(h− 1),

XD
m

(
Xh

1

)
−

m−1∑
i=2

XD
m

(
Xhi−1

i−1 −
(
Xh
i

)hi−1
)

+
(

1−
(
Xm−1X

h−1
m

)hm−1
)

= 1. (4.4.5)

Thus, if we set

g1 = XD
m

gi = XD
m

hi−1−1∑
j=0

Xhi−1−1−j
i−1

(
Xh
i

)j 2 6 i 6 m− 1

gm =
hm−1−1∑
j=0

(
Xm−1X

h−1
m

)j
,

then using (4.4.5), we have 1 = g1f1 + . . .+ gmfm.

We can use these gis to find the desired linear combination of the f̃is and their derivatives.

Using the corresponding identities in K[X1, . . . , Xm], we obtain that

∂h
i−1

i−1 y − ∂h
i

i y =
hi−1−1∑
j=0

∂h
i−1−j−1
i−1 ∂hji (fi) 2 6 i 6 m− 1

y − ∂hm−1

m−1 ∂
hm−1(h−1)
m y =

hm−1−1∑
j=0

∂jm−1∂
j(h−1)
m (fm) .
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Thus, setting D = hm−1(h− 1), we can directly adapt (4.4.5) to see that

∂Dm
(
∂h1 y
)
−

m−1∑
i=2

∂Dm

(
∂h

i−1

i−1 y − ∂h
i

i y
)

+
(
y − ∂hm−1

m−1 ∂
hm−1(h−1)
m y

)
= y. (4.4.6)

This gives us a linear combination of the f̃is and their derivatives that requires exactly

hm−1(h− 1) derivations of f̃1, which we know is minimal by the polynomial case.

Example 4.4.6. We can use (4.4.6) to generalize this result to the case of multiple variables.

We define a system in K{y1, . . . , yn} with derivatives ∆ = {∂1, . . . , ∂m}. Let m > 2, h > 1.

For n = 1, we have (4.4.4). For n > 2, consider the collection of differential polynomials:

G1 =
{
∂h1 y1, ∂1y1 − ∂h2 y1, ∂2y1 − ∂h3 y1, . . . , ∂m−2y1 − ∂hm−1y1

}
Gi =

{
∂m−1yi−1 − ∂h1 yi, ∂1yi − ∂h2 yi, . . . , ∂m−2yi − ∂hm−1yi

}
2 6 i 6 n− 1

Gn =
{
∂m−1yn−1 − ∂h1 yn, ∂1yn − ∂h2 yn, . . . , ∂m−2yn − ∂hm−1yn, yn − ∂m−1∂

h−1
m yn

}
.

Then let G =
⋃n
i=1Gi. We claim that yn ∈ (G)(k) where k > hn(m−1)(h− 1) and

yn /∈ (G)(h
n(m−1)(h−1)−1). (4.4.7)

We can write a system as in (4.4.6) to produce yn in terms of the elements of G and their

derivatives needing exactly hn(m−1)(h−1) derivations of ∂h1 y1. Let E = hn(m−1)(h−1). Then

∂Em
(
∂h1 y1

)
−

n∑
j=1

m−1∑
i=2

∂Em

(
∂h

(j−1)(m−1)+i−1

i−1 yj − ∂h
(j−1)(m−1)+i

i yj

)
−

n−1∑
j=1

∂Em

(
∂h

j(m−1)

m−1 yj − ∂h
j(m−1)+1

1 yj+1

)
+
(
yn − ∂h

n(m−1)

m−1 ∂h
n(m−1)(h−1)
m yn

)
= yn.

By the same minimality argument used in Example 4.4.5, we must differentiate ∂h1 y1 at

least E times. This shows (4.4.7) and there is a k > E with yn ∈ (G)(k).
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Chapter 5

Rosenfeld-Gröbner Algorithm

In this chapter an upper bound for the orders of the derivatives in all intermediate steps and

in the output of the Rosenfeld-Gröbner decomposition algorithm is found. The Rosenfeld-

Gröbner algorithm approaches differential elimination by decomposing a differential ideal

into an intersection of simpler ideals. Background information on differential rankings, dif-

ferential remainders, and regular differential systems is given in Section 5.1. The Rosenfeld-

Gröbner algorithm and basic applications are stated in Section 5.2. The main result, The-

orem 5.3.4, is given in Section 5.3. We analyze the upper bound for specific inputs in

Section 5.4, and address the shape of the lower bound in Section 5.5.

5.1 Differential rankings

This section contains background material on differential rankings that we will need when

discussing the Rosenfeld-Gröbner algorithm. Recall that a ranking on the set ΘY is a total

order < satisfying the following two additional properties: for all u, v ∈ ΘY and all θ ∈ Θ,

θ 6= id,

u < θu and u < v =⇒ θu < θv.

83
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From now on, we fix a weighted ranking < on ΘY , that is we fix a weight w
(
∂i11 . . . ∂imm

)
=

c1i1 + . . . + cmim and a ranking < such that if u, v ∈ ΘY and w(u) < w(v), then u < v.

Note that as in Chapter 4, < is different than the partial order defined on Zm>0 × n used in

Chapters 2 and 3.

Definition 5.1.1. Let f ∈ K{Y } \ K.

• The derivative u ∈ ΘY of highest rank appearing in f is called the leader of f , denoted

lead(f).

• If we write f as a univariate polynomial in lead(f), the leading coefficient is called the

initial of f , denoted init(f).

• If we apply any derivative δ ∈ ∆ to f , the leader of δf is δ(lead(f)), and the initial of

δf is called the separant of f , denoted sep(f).

Note that the term “leader” in this context is different than how it was used in Chapters 2

and 3.

Given a set A ⊆ K{Y }\K, we will denote the set of leaders of A by LA, the set of initials

of A by IA, and the set of separants of A by SA; we then let HA = IA ∪ SA be the set of

initials and separants of A.

For a derivative u ∈ ΘY , we let (ΘY )<u (respectively, (ΘY )6u) be the collection of all

derivatives v ∈ ΘY with v < u (respectively, v 6 u). For any derivative u ∈ ΘY , we let A<u

(respectively, A6u) be the elements of A with leader < u (respectively, 6 u), that is,

A<u := A ∩ K[(ΘY )<u] and A6u := A ∩ K[(ΘY )6u].

We can similarly define (ΘA)<u and (ΘA)6u, where

ΘA := {θf : θ ∈ Θ, f ∈ A}.
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Given f ∈ K{Y } \ K such that deglead(f)(f) = d, we define the rank of f to be

rank(f) := lead(f)d.

The weighted ranking < on ΘY determines a pre-order (that is, a relation satisfying all of

the properties of an order, except for the property that a 6 b and b 6 a imply that a = b)

on K{Y } \ K, as follows. Given f1, f2 ∈ K{Y } \ K, we say that

rank(f1) < rank(f2)

if lead(f1) < lead(f2) or if lead(f1) = lead(f2) and deglead(f1)(f1) < deglead(f2)(f2).

Definition 5.1.2. A differential polynomial f is partially reduced with respect to another

differential polynomial g if no proper derivative of lead(g) appears in f , and f is reduced

with respect to g if, in addition,

deglead(g)(f) < deglead(g)(g).

A differential polynomial is then (partially) reduced with respect to a set A ⊆ K{Y } \ K if

it is (partially) reduced with respect to every element of A.

Definition 5.1.3. For a set A ⊆ K{Y } \ K, we say that A is:

• autoreduced if every element of A is reduced with respect to every other element.

• weak d-triangular if the set of leaders LA is autoreduced.

• d-triangular if A is weak d-triangular and every element of A is partially reduced with

respect to every other element.
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Note that every autoreduced set is d-triangular. Every weak d-triangular set (and thus

every d-triangular and autoreduced set) is finite [24, Proposition 3.9]. Since the set of leaders

of a weak d-triangular set A is autoreduced, distinct elements of A must have distinct leaders.

If u ∈ ΘY is the leader of some element of a weak d-triangular set A, we let Au denote this

element.

We define a pre-order on the collection of all weak d-triangular sets, which we also call

rank, as follows. Given two weak d-triangular sets A = {A1, . . . , Ar} and B = {B1, . . . , Bs},

in each case arranged in increasing rank, we say that rank(A) < rank(B) if either:

• there exists a k 6 min(r, s) such that rank(Ai) = rank(Bi) for all 1 6 i < k and

rank(Ak) < rank(Bk), or

• r > s and rank(Ai) = rank(Bi) for all 1 6 i 6 s.

We also say that rank(A) = rank(B) if r = s and rank(Ai) = rank(Bi) for all 1 6 i 6 r.

We can restrict this ranking to the collection of all d-triangular sets or the collection of

all autoreduced sets.

Definition 5.1.4. A characteristic set of a differential ideal I is an autoreduced set C ⊆ I

of minimal rank among all autoreduced subsets of I.

Given a finite set S ⊆ K{Y }, let S∞ denote the multiplicative set containing 1 and

generated by S. For an ideal I ⊆ K{Y }, we define the saturated ideal to be

I : S∞ := {a ∈ K{Y } : ∃s ∈ S∞ with sa ∈ I}.

If I is a differential ideal, then I : S∞ is also a differential ideal [27, Section I.2].
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Definition 5.1.5. For a differential polynomial f ∈ K{Y } and a weak d-triangular set

A ⊆ K{Y }, a differential partial remainder f1 and a differential remainder f2 of f with

respect to A are differential polynomials such that there exist s ∈ S∞A , h ∈ H∞A such that

sf ≡ f1 mod [A] and hf ≡ f2 mod [A], with f1 partially reduced with respect to A and f2

reduced with respect to A.

We denote a differential partial remainder of f with respect to A by pd-red(f, A) and

a differential remainder of f with respect to A by d-red(f, A). There are algorithms to

compute pd-red(f, A) and d-red(f, A) for any f and A [24, Algorithms 3.12 and 3.13]. These

algorithms have the property that

rank(pd-red(f, A)), rank(d-red(f, A)) 6 rank(f);

since we have a weighted ranking, this implies that

w(pd-red(f, A)), w(d-red(f, A)) 6 w(f).

Two derivatives u, v ∈ ΘY are said to have a common derivative if there exist φ, ψ ∈ Θ

such that φu = ψv. Note this is the case precisely when u = θ1y and v = θ2y for some y ∈ Y

and θ1, θ2 ∈ Θ. If u = ∂i11 . . . ∂imm y and v = ∂j11 . . . ∂jmm y for some y ∈ Y , we define the least

common derivative of u and v, denoted lcd(u, v), to be

lcd(u, v) = ∂
max(i1,j1)
1 . . . ∂max(im,jm)

m y.

Definition 5.1.6. For f, g ∈ K{Y } \ K, we define the ∆-polynomial of f and g, denoted

∆(f, g), as follows. If lead(f) and lead(g) have no common derivatives, set ∆(f, g) = 0.
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Otherwise, let φ, ψ ∈ Θ be such that

lcd(lead(f), lead(g)) = φ(lead(f)) = ψ(lead(g)),

and define

∆(f, g) := sep(g)φ(f)− sep(f)ψ(g).

Definition 5.1.7. A pair (A,H) is called a regular differential system if:

• A is a d-triangular set

• H is a set of differential polynomials that are all partially reduced with respect to A

• SA ⊆ H∞

• for all f, g ∈ A, ∆(f, g) ∈ ((ΘA)<u) : H∞, where u = lcd(lead(f), lead(g)).

Any ideal of the form [A] : H∞, where (A,H) is a regular differential system, is called

a regular differential ideal. Every regular differential ideal is a radical differential ideal [24,

Theorem 4.12]. Given a radical differential ideal I ⊆ K{Y }, a regular decomposition of I is

a finite collection of regular differential systems {(A1, H1), . . . , (Ar, Hr)} such that

I =
r⋂
i=1

[Ai] : H∞i .

As we will see, due to the Rosenfeld-Gröbner algorithm, every radical differential ideal in

K{Y } has a regular decomposition.

A d-triangular set C is called a differential regular chain if it is a characteristic set of

[C] : H∞C ; in this case, we call [C] : H∞C a characterizable differential ideal. A characteristic

decomposition of a radical differential ideal I ⊆ K{Y } is a representation of I as an inter-

section of characterizable differential ideals. As we will recall in Section 5.2, every radical

differential ideal also has a characteristic decomposition.
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5.2 Statement of the algorithm

Below we reproduce the Rosenfeld-Gröbner algorithm from [24, Section 6]. This algorithm

relies on two others, called auto-partial-reduce and update, which we also include. We include

these two auxiliary algorithms because, in Section 5.3, we will study their effect on the

growth of the weights of derivatives in Rosenfeld-Gröbner.

Rosenfeld-Gröbner takes as its input two finite subsets F,K ∈ K{Y } and outputs a finite

set A of regular differential systems such that

{F} : K∞ =
⋂

(A,H)∈A

[A] : H∞, (5.2.1)

where A = ∅ if 1 ∈ {F} : K∞.

If we have a decomposition of {F} : K∞ as in (5.2.1), we can compute, using only

algebraic operations, a decomposition of the form

{F} : K∞ =
⋂
C∈C

[C] : H∞C , (5.2.2)

where C is finite and each C ∈ C is a differential regular chain [24, Algorithms 7.1 and 7.2].

This means that an upper bound on
⋃

(A,H)∈AW(A ∪H) from (5.2.1) will also be an upper

bound on
⋃
C∈CW(C) from (5.2.2).

Rosenfeld-Gröbner has many immediate applications. For example, if K = {1}, then

{F} : K∞ = {F}, so in this case, Rosenfeld-Gröbner computes a regular decomposition of

{F}, which then also gives us a characteristic decomposition of {F} by the discussion in the

previous paragraph.

Recall from Chapter 4 that the weak differential Nullstellensatz says that a system

of polynomial differential equations F = 0 is consistent (that is, has a solution in some

differential field extension of K) if and only if 1 /∈ [F ] [27, Section IV.2]. Thus, since



www.manaraa.com

CHAPTER 5. ROSENFELD-GRÖBNER ALGORITHM 90

Rosenfeld-Gröbner(F,K) = ∅ if and only if 1 ∈ {F} : K∞, we see that F = 0 is consistent if

and only if Rosenfeld-Gröbner(F, {1}) 6= ∅.

More generally, Rosenfeld-Gröbner and its extension for computing a characteristic decom-

position of a radical differential ideal allow us to test for membership in a radical differential

ideal, as follows. Suppose we have computed a characteristic decomposition

{F} =
⋂
C∈C

[C] : H∞C .

Now, a differential polynomial f ∈ K{Y } is contained in {F} if and only if f ∈ [C] : H∞C for

all C ∈ C; this latter case is true if and only if d-red(f, C) = 0, which can be tested using

[24, Algorithm 3.13].

Rosenfeld-Gröbner, auto-partial-reduce, and update rely on the following tuples of differen-

tial polynomials:

Definition 5.2.1. A Rosenfeld-Gröbner quadruple (or RG-quadruple) is a 4-tuple (G,D,A,H)

of finite subsets of K{Y } such that:

• A is a weak d-triangular set, HA ⊆ H, D is a set of ∆-polynomials, and

• for all f, g ∈ A, either ∆(f, g) = 0 or ∆(f, g) ∈ D or

∆(f, g) ∈ (Θ(A ∪G)<u) : H∞u ,

where u = lcd(lead(f), lead(g)) and Hu = HA<u ∪ (H \HA) ∩ K[(ΘY )<u].

Remark 5.2.2. The RG-quadruple that is output by update satisfies additional properties

that we do not list, as they are not important for our analysis. For more information, we

refer the reader to [24, Algorithm 6.10]
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Algorithm: Rosenfeld-Gröbner, [24, Algorithm 6.11]

Data: F , K finite subsets of K{Y }
Result: A set A of regular differential systems such that:

• A is empty if it has been detected that 1 ∈ {F} : K∞

• {F} : K∞ =
⋂

(A,H)∈A
[A] : H∞ otherwise

S := {(F, ∅, ∅, K)};
A := ∅;
while S 6= ∅ do

(G,D,A,H) := an element of S;
S̄ = S \ (G,D,A,H);
if G ∪D = ∅ then
A := A ∪ auto-partial-reduce(A,H);

else
p := an element of G ∪D;
Ḡ, D̄ := G \ {p}, D \ {p};
p̄ := d-red(p,A);
if p̄ = 0 then
S̄ := S̄ ∪ {(Ḡ, D̄, A,H)};

else
if p̄ /∈ K then

p̄i := p̄− init(p̄) rank(p̄) p̄s := deglead(p̄)(p̄)p̄− lead(p̄) sep(p̄);

S̄ := S̄ ∪ {update(Ḡ, D̄, A,H, p̄), (G ∪ {p̄s, sep(p̄)}, D̄, A,H ∪
{init(p̄)}), (Ḡ ∪ {p̄i, init(p̄)}, D̄, A,H)};

end

end

end
S := S̄;

end
return A;
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Algorithm: auto-partial-reduce, [24, Algorithm 6.8]

Data: Two finite subsets A,H of K{Y } such that (∅, ∅, A,H) is an RG-quadruple
Result:

• The empty set if it is detected that 1 ∈ [A] : H∞

• Otherwise, a set with a single regular differential system (B,K) with LA = LB,
HB ⊆ K, and [A] : H∞ = [B] : K∞

B := ∅;
for u ∈ LA increasingly do

b := pd-red(Au, B);
if rank(b) = rank(Au) then

B := B ∪ {b};
else

return (∅);
end

end
K := HB ∪ {pd-red(p,B) : p ∈ H \HA};
if 0 ∈ K then

return (∅);
else

return {(B,K)};
end

Algorithm: update [24, Algorithm 6.10]

Data:

• A 4-tuple (G,D,A,H) of finite subsets of K{Y }

• A differential polynomial p reduced with respect to A such that (G ∪ {p}, D,A,H) is
an RG-quadruple

Result: A new RG-quadruple (Ḡ, D̄, Ā, H̄)
u := lead(p);
GA := {a ∈ A | lead(a) ∈ Θu};
Ā := A \GA;
Ḡ := G ∪GA;
D̄ := D ∪ {∆(p, a) | a ∈ Ā} \ {0};
H̄ := H ∪ {sep(p), init(p)};
return (Ḡ, D̄, Ā ∪ {p}, H̄);



www.manaraa.com

CHAPTER 5. ROSENFELD-GRÖBNER ALGORITHM 93

5.3 Order upper bound

Given finite subsets F,K ⊆ K{Y }, let h =W(F ∪K). Our goal is to find an upper bound

for

W

 ⋃
(A,H)∈A

(A ∪H)

 ,

where A = Rosenfeld-Gröbner(F,K), in terms of h, m (the number of derivations), and n

(the number of differential indeterminates). By then choosing a specific weight, we can find

an upper bound for H
(⋃

(A,H)∈A(A ∪H)
)

in terms of m, n, and H(F ∪K) (see (2.1.1) and

(2.1.2) for the definitions of H and W , respectively).

We approach this problem as follows. Every (A,H) ∈ A is formed by applying auto-

partial-reduce to a 4-tuple (∅, ∅, A′, H ′) ∈ S. Thus, it suffices:

• to bound how auto-partial-reduce increases the weight of a collection of differential

polynomials (it turns out to not increase the weight), and

• to bound W(G∪D ∪A∪H) for all (G,D,A,H) added to S throughout the course of

Rosenfeld-Gröbner.

We accomplish the latter by determining when the weight of a tuple (G,D,A,H) added to

S is larger than the weights of the previous elements of S and bounding W(G∪D ∪A∪H)

in this instance, and then bounding the number of times we can add such elements to S.

There is a sequence {(Gi, Di, Ai, Hi)}Ni=0 corresponding to each regular differential sys-

tem (A,H) in the output of Rosenfeld-Gröbner, where N = N(A,H), such that the tuple

(Gi+1, Di+1, Ai+1, Hi+1) is obtained from the tuple (Gi, Di, Ai, Hi) during the while loop,

(G0, D0, A0, H0) = (F, ∅, ∅, K), and (A,H) = auto-partial-reduce(AN , HN).

We begin with an auxiliary result, which is an analogue of the first property from [15,

Section 5.1].
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Lemma 5.3.1. For every f ∈ Ai and i < j, there exists g ∈ Aj such that lead(f) ∈

Θ lead(g). In particular, if p is reduced with respect to Aj, then p is reduced with respect to

Ai for all i < j.

Proof. It is sufficient to consider the case j = i+ 1. If (Gi+1, Di+1, Ai+1, Hi+1) was obtained

from (Gi, Di, Ai, Hi) without applying update, then Ai = Ai+1. Otherwise, either f ∈ Ai\GAi

(we use the notation from update), or f ∈ GAi . In the former case, f ∈ Ai+1 as well, so we

can set g = f . In the latter case, lead(f) ∈ Θ lead(p), so we can set g = p.

We define a partial order 4 on the set of derivatives ΘY as follows. For u, v ∈ ΘY , we

say that u 4 v if there exists θ ∈ Θ such that θu = v. Note that this implies that u and v

are both derivatives of the same y ∈ Y .

Given a sequence {(Gi, Di, Ai, Hi)}Ni=0 as above (where N = N(A,H) for some regular

differential system (A,H) in the output of Rosenfeld-Gröbner), we will construct an antichain

sequence S = {s1, s2, . . .} ⊆ ΘY inductively going along the sequence {(Gi, Di, Ai, Hi)}.

Suppose Sj−1 = {s1, . . . , sj−1} has been constructed after considering

(G0, D0, A0, H0), . . . , (Gi−1, Di−1, Ai−1, Hi−1),

where S0 = ∅. A 4-tuple (Gi, Di, Ai, Hi) can be obtained from (Gi−1, Di−1, Ai−1, Hi−1) in

two ways:

1. We did not perform update. In this case, we do not append a new element to S.

2. We performed update with respect to a differential polynomial p̄. If there exists sk ∈

Sj−1 such that lead(p̄) 6 sk, we do not append a new element to Sj−1. Otherwise, let

sj = lead(p̄) and define Sj = {s1, . . . , sj}. In the latter case, we set kj = i. We also set

k0 = 0.
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Theorem 5.3.2. The sequence {sj} is an antichain sequence in ΘY and, for all j > 1,

w(sj) 6 hfj,

where {fj} is the Fibonacci sequence.

For m = 2, we provide a refined version of Theorem 5.3.2. Let {f(n, h)k} be the sequence:


f(n, h)0 = 0, f(n, h)1 = f(n, h)2 = h

f(n, h)k = f(n, h)k−1 + f(n, h)k−2 for k 6 n+ 1

f(n, h)k = f(n, h)k−1 + f(n, h)k−2 − 1 for k > n+ 1.

(5.3.1)

Proposition 5.3.3. For m = 2 the sequence {sj} satisfies, for all j > 1,

w(sj) 6 f(n, h)j.

We will prove Proposition 5.3.3 while proving Theorem 5.3.2, highlighting the case m = 2.

Proof. Let i < j. Assume that sj < si. Then, p is not reduced with respect to Aki ,

which contradicts Lemma 5.3.1. On the other hand, the case sj 4 si is impossible by the

construction of the sequence, so {sj} is an antichain sequence.

Let L denote the length of the sequence {sj}. We denote the maximal j ∈ Z>0 such that

kj 6 i by anti-k i. For all i > 0, let us set j = anti-k i and prove by induction on i that

1. W
(

i⋃
t=0

(Gt ∪Dt ∪Ht)

)
6 hfj+1

2. W
(

i⋃
t=0

At

)
6 hfj

3. For all distinct elements of
i⋃
t=0

At, the weights of the least common derivatives of their

leaders do not exceed hfj+1.
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If m = 2, let F0 = 0, F1 = F2 = h. We will show that there exists a sequence {Fr} such

that

• for all r > 1, w(sr) 6 Fr and

• Fr = Fr−1 + Fr−2 − 1 for all r > 3 except at most n − 1 of them, for which Fr =

Fr−1 + Fr−2. In the latter case, we will say that r is a jump index. Note that 2 is not

a jump index by the definition, although F2 = F1 + F0.

For each such sequence, the induction hypothesis will be the following:

1. W
(

i⋃
t=0

(Gt ∪Dt ∪Ht)

)
6 Fj+1 for j < L and W

(
i⋃
t=0

(Gt ∪Dt ∪Ht)

)
6 FL+1 + 1 for

j = L

2. W
(

i⋃
t=0

At

)
6 Fj

3. For all distinct elements of
i⋃
t=0

At, the weights of the least common derivatives of their

leaders do not exceed Fj+1 for j < L and FL+1 + 1 for j = L

4. If, in either of (1) or (3), the equality holds in the case j = L, then, for every q,

1 6 q 6 n, the sequence {sr} contains ∂
aq
1 yq and ∂

bq
2 yq for some aq and bq.

In the base case i = 0 = k0, we have

W(G0 ∪D0 ∪H0) = h = hf1 (F1 in the case m = 2)

and

W(A0) =W(∅) = 0 = hf0 (F0 in the case m = 2).

There are two distinct cases for i+ 1:

1. Case i+ 1 < kj+1 (so anti-k i+1 = j). Then, (Gi+1, Di+1, Ai+1, Hi+1) was obtained from

(Gi, Di, Ai, Hi) in one of the following ways:
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(a) We did not perform update. In this case, Ai+1 = Ai and

W(Gi+1 ∪Di+1 ∪Hi+1) 6W(Gi ∪Di ∪Hi).

(b) We performed update with respect to a differential polynomial p such that lead(f) ∈

Θ lead(p) for some f ∈
⋃i
t=0At. In this case,

W(Ai+1) 6W

(
i⋃
t=0

At

)
.

Then, for all g ∈ At (t 6 i),

w(∆(p, g)) 6 w(lcd(lead(g), lead(f))),

which is bounded by hfj+1 (by Fj+1 or FL+1 + 1 in the case m = 2) due to the

third inductive hypothesis. Since Di+1 \Di consists of some of these polynomials,

Gi+1 \Gi ⊆ Ai, and Hi+1 \Hi = {sep(p), init(p)}, then

W(Gi+1 ∪Di+1 ∪Hi+1) 6W(Gi ∪Di ∪Hi).

2. Case i+ 1 = kj+1 (so now anti-k i+1 = j + 1). We performed update with respect to

a differential polynomial p, which is a result of reduction of some p̃ ∈ Gi ∪ Di with

respect to Ai. Then

W(Ai+1) 6 max(W(Ai), w(p)) 6 hfj+1.
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Moreover, for every g ∈
i⋃
t=0

At,

w(lcd(lead(g), lead(p))) 6 hfj + hfj+1 = hfj+2. (5.3.2)

Since Di+1 \Di consists of some of these polynomials, Gi+1 \Gi ⊆ Ai, and Hi+1 \Hi =

{sep(p), init(p)}, we have

W(Gi+1∪Di+1 ∪Hi+1) 6 max(W(Gi ∪Di ∪Hi), hfj+2) = hfj+2.

In the case m = 2, instead of (5.3.2), we obtain

w(lcd(lead(g), lead(p))) 6 w(lead(p)) + w(lead(g)) (5.3.3)

If (5.3.3) is strict, we have

w(lcd(lead(g), lead(p))) 6 w(lead(p)) + w(lead(g))− 1 6 Fj + Fj+1 − 1 = Fj+2,

and j + 2 is not a jump index. Otherwise, (5.3.3) turns out to be an equality. In this

case, the only possibility is lead(p) = ∂a1yr and lead(g) = ∂b2yr (or vice versa) for some

r. Note that, for every r, such a situation occurs at most once. Consider the following

two cases:

(a) For every q, 1 6 q 6 n, the sequence s1, . . . , sj+1 already contains ∂
aq
1 yq and ∂

bq
2 yq

for some aq and bq. In this case, s1, . . . , sj+1 already form an antichain sequence

that cannot be extended further, so j + 1 = L. We set FL+1 = FL + FL−1 − 1, so

we can bound the right-hand side of (5.3.3) from above by FL+1 + 1.
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(b) Otherwise, we just set Fj+2 = Fj+1 + Fj, so j + 2 is a jump index, and we still

have less than n of them.

Since w(sj) 6W(Akj) 6 hfj, this completes the proof of Theorem 5.3.2.

In order to complete the proof of Proposition 5.3.3, it is sufficient to show that, for every

such sequence {Fj}, for all j, f(n, h)j > Fj. Let i1, . . . , in−1 denote the jump indices of {Fj}.

Note that {f(n, h)j} is uniquely defined as a sequence of the same type as {Fj} with jump

indices 3, . . . , n + 1. It is sufficient to prove that, after decreasing any jump index of {Fj}

by one, we obtain a sequence which is not smaller than {Fj}. Then, since we will obtain

{f(n, h)j} after some number of such operations and the jump indices of {f(n, h)j} cannot

be further decreased, we will have that {f(n, h)j} is the largest such sequence. The claim is

true since, before decreasing ij, the sequence was of the form

. . . , Fij−2, Fij−1 = Fij−3 + Fij−2 − 1, Fij = Fij−1 + Fij−2 = Fij−3 + 2Fij−2 − 1, . . .

but, after decreasing ij by one, it will be of the form

. . . , Fij−2, Fij−1 = Fij−3 + Fij−2, Fij = Fij−1 + Fij−2 − 1 = Fij−3 + 2Fij−2 − 1, . . .

Since the rest of terms obey the same recurrence for both sequences, the latter is not smaller

than the former.

Recall that the degree of an element ((i1, . . . , im), k) ∈ Zm>0×n is defined to be i1+. . .+im.

Given a weight w
(
∂i11 . . . ∂imm

)
= c1i1+. . .+cmim on Θ, define a map from the set of derivatives

ΘY to the set Zm>0 × n by

∂i11 . . . ∂imm yk 7→ ((c1i1, . . . , cmim), k).
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Note the degree of the image of θy in Z>0 × n is equal to the weight of θy in ΘY .

Under this map, the partial order 4 on ΘY determines the partial order 6 on Zm>0 × n

given in Section 2.2 by

((i1, . . . , im), k) 6 ((j1, . . . , jm), l) ⇐⇒ k = l and ir 6 jr for all r, 1 6 r 6 m.

Thus, every antichain sequence of ΘY determines an antichain sequence of Zm>0 × n. Since

every antichain sequence of Zm>0 × n is finite, so is every antichain sequence of ΘY .

For an increasing function f : Z>0 → Z>0, let Lnf,m be the maximal length of an antichain

sequence of Zm>0×n with degree growth bounded by f , which exists as described in Chapter 3.

Theorem 5.3.4. Let F,K ⊆ K{Y } be finite subsets with h = W(F ∪ K), L = Lnf,m, and

A = Rosenfeld-Gröbner(F,K), where f(i) = hfi with {fi} the Fibonacci sequence. Then

W

 ⋃
(A,H)∈A

(A ∪H)

 6 hfL+1.

Proof. Since w(pd-red(p,B)) 6 w(p) for any p ∈ K{Y } and weak d-triangular set B, we have

W(B ∪K) 6 W(A ∪H), where {(B,K)} = auto-partial-reduce(A,H). Hence, it suffices to

boundW(G∪D∪A∪H) whenever the tuple (G,D,A,H) is added to S in Rosenfeld-Gröbner.

By Theorem 5.3.2 and the correspondence between antichain sequences of ΘY and Zm>0×n,

we obtain an antichain sequence of Zm>0× n of degree growth bounded by f(i), so the length

of this sequence (and thus the sequence from Theorem 5.3.2) is at most L.

In the proof of Theorem 5.3.2, it is shown that for all i 6 N , for j := anti-k i, we have

W

(
i⋃
t=1

(Gt ∪Dt ∪ At ∪Ht)

)
6 hfj+1.
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Since the largest possible j is the length of the antichain sequence (and this j is equal to

anti-kN), for every (Gi, Di, Ai, Hi), we have

W(Gi ∪Di ∪ Ai ∪Hi) 6 hfL+1.

Since every (G,D,A,H) added to S equals (Gi, Di, Ai, Hi) for some i, this ends the proof.

Corollary 5.3.5. Let m = 2, F,K ⊆ K{Y } be finite subsets with h =W(F ∪K), L = Lnf,2,

and A = Rosenfeld-Gröbner(F,K), where f(i) = f(n, h)i with {f(n, h)i} given by (5.3.1).

Then

W

 ⋃
(A,H)∈A

(A ∪H)

 6 f(n, h)L+1.

Proof. Replacing hfi with f(n, h)i everywhere in the proof of Theorem 5.3.4, we obtain an

argument that is valid in all cases except for the case in which, for every q, 1 6 q 6 n,

the antichain sequence {sj} contains ∂
aq
1 yq and ∂

bq
2 yq for some aq and bq. In this case, we

still have W(Ai) 6 f(n, h)L for all i. We will prove that W(Hi) 6 f(n, h)L+1 for all i. For

i < kL, this inequality follows from the proof of Theorem 5.3.2. For i > kL, every h added

to Hi is reduced with respect to Ai (see Rosenfeld-Gröbner). The definition of kj implies that

the set of leaders of Akj contains sj. While performing update for Ai, every leader s of Ai

either survives or is replaced with s̃ such that s is a derivative of s̃. Hence, for all i > kj,

the set of leaders of Ai contains either sj or s̃ such that sj is a derivative of s̃. Thus, since

h is reduced with respect to Ai for i > kL, for every variable ∂a1∂
b
2yq occurring in h, we have

a < aq and b < bq. Thus,

w(h) 6 max
16q6n

(
w
(
∂
aq−1
1 yq

)
+ w

(
∂
bq−1
2 yq

))
6 f(n, h)L + f(n, h)L−1 − 2 < f(n, h)L+1.
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We can use Theorem 5.3.4 and Corollary 5.3.5 to bound the orders of the output Rosenfeld-

Gröbner. Let F,K ⊆ K{Y } be two finite subsets, and define a weight w on Θ such that

W(F ∪K) = H(F ∪K). (5.3.4)

This can always be done by letting w(θ) = ord(θ) for all derivatives θ, but there are sometimes

other weights that lead to equation (5.3.4) being satisfied.

Example 5.3.6. We provide examples of differential polynomials f that arise as part of

systems of PDEs for which it is possible to construct a nontrivial weight w such that

w(f) = ord(f). We note that we are not applying Rosenfeld-Gröbner to these examples;

we simply present them to demonstrate that there are nontrivial weights satisfying equa-

tion (5.3.4).

1. Consider the heat equation

ut − α · (uxx + uyy) = 0, f(u) := ∂tu− α · (∂2
xu+ ∂2

yu) ∈ K{u},

where u(x, y, t) is the unknown, α is a positive constant, and K{u} has derivations

{∂x, ∂y, ∂t}. If we define a weight w on Θ by

w
(
∂ix∂

j
y∂

k
t

)
= i+ j + 2k,

then w(f) = 2 = ord(f).

2. Consider the K-dV equation

φt + φxxx + 6φφx = 0, f(φ) := ∂tφ+ ∂3
xφ+ 6φ∂xφ ∈ K{φ},
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where φ(x, t) is the unknown and K{φ} has derivations {∂x, ∂t}. Define a weight w on

Θ by

w
(
∂ix∂

j
t

)
= i+ 3j,

so that w(f) = 3 = ord(f).

Using Theorem 5.3.4, Corollary 5.3.5, and (5.3.4), we obtain the following order bound

for the output of Rosenfeld-Gröbner:

Corollary 5.3.7. Let F,K ⊆ K{Y } be finite subsets with h = H(F ∪K), L = Lnf,m, A =

Rosenfeld-Gröbner(F,K), where f(i) = f(n, h)i with {f(n, h)i} the sequence given by (5.3.1)

if m = 2 and f(i) = hfi with {fi} the Fibonacci sequence if m > 2. Let w
(
∂i11 . . . ∂imm

)
=

c1i1 + . . . + cmim be a weight defined on ΘY such that W(F ∪K) = H(F ∪K). Then, for

all g ∈ A,

ord(g, ∂i) 6


f(n,h)L+1

ci
if m = 2

hfL+1

ci
if m > 2.

5.4 Specific values

In order to apply the results of the previous section, we need to be able to effectively compute

Lnf,m. [35] only proved the existence of this number, without an analysis of how to construct

it. [12] constructed an upper bound for m = 1, 2. The first analysis for the case of arbitrary

m appears in [31]. This was studied extensively in Chapter 3; we repeat the main points.

For an increasing function f : Z>0 → Z>0, recall the definition of Ψf,m : Z>0×Zm>0 → Z>0
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given in (3.3.2):



Ψf,m(i, (0, . . . , 0, um)) = i

Ψf,m(i− 1, (u1, . . . , ur, 0, . . . , 0, um))

= Ψf,m(i, (u1, . . . , ur − 1, f(i)− f(i− 1) + um + 1, 0, . . . , 0)), r < m− 1, ur > 0

Ψf,m(i− 1, (u1, . . . , um))

= Ψf,m(i, (u1, . . . , um−1 − 1, f(i)− f(i− 1) + um + 1)), um−1 > 0.

By Proposition 3.3.2, we know that the maximal length of an antichain sequence in Zm>0

with degree growth bounded by f does not exceed

Ψf,m(1, (f(1), 0, . . . , 0)).

Let us also define the sequence ψ0, ψ1, . . . by the relations ψ0 = 0 and

ψi+1 = Ψfi,m(1, (fi(1), 0, . . . , 0)) + ψi, fi(x) := f(x+ ψi).

Then Proposition 3.3.6 implies the following:

Proposition 5.4.1 ([31, Corollary 3.14]). The maximal length of an antichain sequence in

Zm>0 × n with degree growth bounded by f does not exceed ψn.

Now, let us apply this technique to the functions f1(i) = f(n, h)i and f2(i) = hfi. Then,

by Theorem 5.3.4 and Corollary 5.3.5, an upper bound on the weights of the output of

Rosenfeld-Gröbner will be f1(Lnf1,2 + 1) if m = 2 and f2(Lnf2,m + 1) if m > 2. In general, we

do not have formulas for Lnf1,2 and Lnf2,m for arbitrary h,m, n that improves the one given

in Proposition 5.4.1; however, we can compute Lnf1,2 and Lnf2,m for some specific values of

h,m, n.
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If W(F ∪K) = H(F ∪K) = h, we can use Corollary 5.3.7 to produce perhaps sharper

bounds for the order of the elements of Rosenfeld-Gröbner(F,K) with respect to particular

derivations. In the examples that follow, we calculate upper bounds for ord(g, ∂1) for g ∈

Rosenfeld-Gröbner(F,K), where w
(
∂i11 . . . ∂imm

)
= c1i1 + . . .+cmim in the case in which c1 = 2

and the case in which c1 = 3. We note that in the tables that follow, “N/A” appears whenever

we cannot have the given initial order h with given ci as part of the weight function.

1. Assume that n = 1 and m = 2. Then the maximal length of an antichain sequence does

not exceed h + 1. In this case, the weights of the resulting polynomials are bounded

by f(1, h)h+2, which results in Table 5.1.

Table 5.1: Case m = 2 and n = 1

h 1 2 3 4 5 6 7 8 9 10
f(1, h)h+2 1 4 11 25 55 106 205 386 713 1297

ord(g, ∂1), c1 = 2 N/A 2 5 12 26 53 102 193 356 648
ord(g, ∂1), c1 = 3 N/A N/A 3 8 17 35 68 128 237 432

2. Assume that m = 2 and n is arbitrary. Then the maximal length of an antichain

sequence does not exceed bn, where bn satisfies b1 = h+1 and bn+1 = f(n, h)bn+1+bn+1,

which results in Table 5.2.

Table 5.2: Case m = 2 and n arbitrary

n h bn f(n, h)bn+1 ord(g, ∂1), c1 = 2 ord(g, ∂1), c1 = 3
2 1 5 4 N/A N/A
2 2 9 77 38 N/A
2 3 18 9,960 4,980 3,320
2 4 34 31, 206, 974 15, 603, 487 10, 402, 324
3 1 11 90 N/A N/A
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3. Assume that m = 3 and n = 1. We can construct the maximal length antichain

sequence of Z3
>0 using the methods of [31] and the function f(i) = hfi, resulting in the

following sequence:

(h, 0, 0), (h− 1, 1, 0), (h− 1, 0, h+ 1), (h− 2, 2h+ 2, 0), . . . ,

(h− 2, 0, hf2h+6 − (h− 2)), . . . , (h− i, hfci−1+1 − (h− i), 0), . . . ,

(h− i, 0, hfci − (h− i)), . . . , (0, hfch−1+1, 0), . . . , (0, 0, hfch),

where the sequence ci is given by c0 = 1 and for 1 6 i 6 h,

ci = ci−1 + 1 + hfci−1+1 − (h− i).

As a result, we see that the maximal length of an antichain sequence is equal to ch.

Table 5.3 shows some maximal lengths Lnf,m and weights f(Lnf,m + 1), where f(i) = hfi,

for m = 3, 4, and 5.

Table 5.3: Case m, n arbitrary

m n h length weight
3 1 1 3 3
3 1 2 10 178
3 1 3 712 6 10150

3 2 1 433, 494, 480 6 1090,594,990

4 1 1 5 8
5 1 1 20 10,946
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5.5 Order lower bound

This section gives a lower bound for the orders of the output of Rosenfeld-Gröbner, coming

from the lower bound for degrees of elements of a Gröbner basis from [43]. To be specific,

we show that for m,h sufficiently large, there is a set of r differential polynomials F ⊆ K{y}

of order at most h, where K is equipped with m derivations, r ∼ m/2, and K is constant

with respect to all of the derivations, such that if A = Rosenfeld-Gröbner(F, {1}), then

H

 ⋃
(A,H)∈A

(A ∪H)

 > h2r . (5.5.1)

The arguments presented here are standard, and we include them for completeness. We

first note the following standard fact about differential ideals generated by linear differential

polynomials.

Proposition 5.5.1. Suppose F,K ⊆ K{Y } are composed of linear differential polynomials.

Then the output of Rosenfeld-Gröbner(F,K) is either empty or consists of a single regular

differential system (A,H) with A and H both composed of linear differential polynomials.

Suppose now we apply Rosenfeld-Gröbner to (F, {1}), where F consists of linear differential

polynomials, in order to obtain a regular decomposition of {F}. Since every element of F is

linear, [F ] is a prime differential ideal, so by Proposition 5.5.1, we have

[F ] = {F} = [A] : H∞

for some regular differential system (A,H), with A and H both composed of linear differential

polynomials. Since every element of A is linear, after performing scalar multiplications and

addition, A can be transformed to an autoreduced set Ā without affecting the leaders and

orders of elements of A. Since (A,H) is a regular differential system, Ā is a characteristic set
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of [F ]. So, it suffices to find a lower bound on the orders of elements of linear characteristic

sets in K{Y }.

There is a well-studied one-to-one correspondence between polynomials in K[X1, . . . , Xm]

and homogeneous linear differential polynomials in K{y} with m derivations and K a field

of constants, as seen in Section 4.4:

∑
ci1,...,imX

i1
1 · . . . ·X im

m ↔
∑

ci1,...,im∂
i1
1 . . . ∂imm y. (5.5.2)

Any orderly ranking on Θy then determines a graded monomial order on K[X1, . . . , Xm].

Given a polynomial f ∈ K[X1, . . . , Xm], let f̃ ∈ K{y} be its corresponding differential

polynomial under (5.5.2). By the discussion above, if we have a collection of polynomi-

als f1, . . . , fr ∈ K[X1, . . . , Xm], we can construct a characteristic set C = {C1, . . . , Cs} of

[f̃1, . . . , f̃r] ⊆ K{y} consisting of homogeneous linear differential polynomials, and so each

Ci ∈ K{y} is in fact equal to g̃i for some gi ∈ K[X1, . . . , Xm].

Proposition 5.5.2 (cf. [42, page 352],[13]). With the notation above,

{g1, . . . , gs} ⊆ K[X1, . . . , Xm]

is a Gröbner basis of the ideal I = (f1, . . . , fr).

By Proposition 5.5.2, we can find a lower bound for the orders of the output of Rosenfeld-

Gröbner via a lower bound for the degrees of elements of a Gröbner basis, as shown:

Example 5.5.3. This example demonstrates the lower bound (5.5.1) for the orders of the

output of Rosenfeld-Gröbner. In [43, Section 8], for m,h sufficiently large, a collection of

m algebraic polynomials f1, . . . , fr of degree at most h in m algebraic indeterminates, with

r ∼ m/2, is constructed such that any Gröbner basis of (f1, . . . , fr) with respect to a graded

monomial order has an element of degree at least h2r .
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As a result of the previous discussion, we have a collection of differential polynomials

F = f̃1, . . . , f̃r ∈ K{y} of order h with m derivations such that any linear characteristic

set of [f̃1, . . . , f̃r] will contain a differential polynomial of order at least h2r . Since in this

case {(A,H)} = Rosenfeld-Gröbner(F, {1}) can be transformed into a linear characteristic

set without affecting the orders of the elements, this means that

H(A ∪H) > h2r .
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